

HIGH RELIABILITY HYBRID CRYSTAL CLOCK OSCILLATORS 18 to 5.0Vdc - 15kHz to 250MHz

Features

- Made in the USA ECCN: EAR99
- DFARS 252-225-7014 Compliant Electronic Component Exemption
- Broad frequency range from 15kHz to 250MHz (for higher frequencies please consult the factory)
- Rugged 4-point mount (SMD ceramic) or 3 point mount (others) shock resistant
- Small packages and footprints offering 5x7mm SMT and leaded with 4-point crystal mount
- 100kRad (Si) tolerant
- ACMOS, LVCMOS, TTL, LVDS, LVPECL
- Tristate Output option (-D) except for LVDS and LVPECL (standard)
- Hermetically sealed package
- Fundamental and 3rd Overtone design
- Swept Quartz Crystal or Cultured Quartz Crystal
- · Low phase noise and jitter
- Q-Tech does not use pure lead or pure tin in its products
- Custom screening and QCI available with MCM part number
- MIL-PRF-55310/9, /16, /21, /26, /27, /28, /30, /33, /34, /35, /36, /37, /38, /39, /40 equivalent

(Sample part number) QT188ACD10S-100.000MHz

Q-TECH Corporation - 6161 Chip Avenue, Cypress, CA 90630 - Tel: 310-836-7900 - Fax: 310-730-6440 - www.q-tech.com

Ordering Information

GENERAL SPECIFICATION

1 SCOPE

- 1.1 <u>Scope.</u> This specification establishes the general quality and reliability requirements for a family of hybrid, hermetically sealed square wave, B+ crystal oscillators.
- 1.2 <u>Part Number.</u> The part number shall be as specified in the detail specification.

2 APPLICABLE DOCUMENTS

2.1 <u>Specifications and Standards.</u> Unless otherwise specified, the following documents shall be applicable to this specification to the extent specified herein.

SPECIFICATIONS

MIL-PRF-55310 Crystal Oscillators, General Specification For

MIL-PRF-38534 Hybrid Microcircuits, General Specification For

EEE-INST-002 Instructions for EEE Parts Sections, Screenings, Qualifications and Ratings

STANDARDS

- MIL-STD-202 Test Methods for Electronic and Electrical Component Parts
- MIL-STD-883 Test Methods and Procedures for Microelectronics
- 2.2 <u>Conflicting Requirements.</u> In the event of conflict between requirements of this specification and other requirements of the applicable detail drawing, the precedence in which requirements shall govern, in descending order, is as follows:
 - a) Applicable Customer purchase order.
 - b) Applicable Customer detail drawing.
 - c) This specification.
 - d) Other specifications or standards referenced in 2.1 herein.
- 2.3 <u>Customer Purchase Order Special Requirements.</u> Additional special requirements shall be specified in the applicable Customer purchase order when additional requirements or modifications specified herein are needed for compliance to special program or product line requirements

3 REQUIREMENTS

- 3.1 <u>Item Requirements.</u> The individual item requirements shall be as specified herein and the detail specification.
- 3.2 <u>Case Outline</u>. The case outline shall be as specified in the detail specification. (See pages 29 to 32).
- 3.2.1 <u>Terminal Connections.</u> The terminal connections shall be as shown on page 33.
- 3.2.2 <u>Lead Material and Finish.</u> Lead material and finish shall be as shown on page 34.
- 3.2.3 <u>Hot Solder Dip.</u> Terminals can be solder dipped Sn60/Pb40 per MIL-PRF-55310 at additional cost. Prefix designated with an "S". See sample part number in the "Ordering Information" table.
- 3.2.4 <u>Solderability</u>. Leads shall meet the requirements of MIL-PRF-55310/38534 when tested.
- 3.3 <u>Maximum Ratings.</u> Unless otherwise specified, the maximum ratings shall as specified in the detail specification.
- 3.4 <u>Electrical Performance Requirements.</u> The electrical performance requirements shall be as specified herein and the applicable detail specification.
- 3.5 <u>Design and Construction</u>. The design and construction of the crystal oscillator shall be as specified herein. As a minimum, the oscillators shall meet the design and construction requirements of MIL-PRF-55310.

GENERAL SPECIFICATION (Cont'd)

- 3.5.1 <u>Construction Technology</u>. The device shall be constructed as a class 2-Type 1 hybrid oscillator of MIL-PRF-55310.
- 3.5.2 <u>Workmanship</u>. The device workmanship shall meet the requirements of MIL-PRF-55310.
- 3.5.3 <u>Element Derating</u>. All active and passive elements shall be derated in accordance with the applicable hybrid microcircuit element requirements of MIL-STD-975. Elements shall not operate in excess of derated values.
- 3.5.4 <u>Active Elements.</u> The active component shall be derived from lots that meet the Element Evaluation requirements of MIL-PRF-38534, Class K (for QT100 and QT200), 100kRad (Si) tolerant, and MIL-PRF-55310, Level B (QT300).
- 3.5.4.1 Scanning Electron Microscopy.

There is a potential of metallization thinning per MIL-STD-883, Method 2018 that can be observed during DPA for active die using 0.8µm BiCMOS technology. The active die in this series are CMOS, LVDS, and LVPECL with frequencies between 70MHz and 250MHz for 1.8Vdc, 2.5Vdc, and 3.3Vdc supply.

The requirement per MIL-STD-883, Method 2018 is for multi-directional contacts. For contacts with >10% wrap around, the metallization shall be \geq 20%. The worst step coverage either in Metal 1 (M1) or Metal 2 (M2) without barrier may see a result of less than 20% during DPA work of cross-sectioning.

There is a concern of how the preparation for SEM was performed since the oxide film around the metal is etched back and anti-reflection film was removed. The DPA work uses a chemical wet etch method that could cause the SiO_2 layer and polysilicon under Metal 1 (M1) of the DPA unit to melt away during the chemical process and prior to SEM examination.

Although the worst-step coverage is less than 20% per MIL-STD-883, Method 2018, the calculation of current density met the requirement of $2x10^5$ A/cm² applicable to conductors of 99.99% Aluminum per MIL-PRF-38535, Appendix A and is not a concern in reliability and quality of the oscillators. Worst step coverage can be accepted at 12% or higher to maintain the current density as calculated.

- 3.5.5 <u>Quartz Crystal.</u> Unless otherwise specified by the detail specification, the quartz crystal material for the QT100 and QT300 shall be swept synthetic, grade 2.2 millions or better and cultured quartz crystal for QT200.
- 3.5.6 <u>Passive Elements.</u> Element Evaluation shall be as a minimum in accordance with MIL-PRF-55310, Level S for QT100 and Level B for QT200 And QT300.
- 3.5.7 <u>Crystal Mounting</u>. The crystal element shall be three-point minimum mounted in such a manner as to assure adequate crystal performance when the oscillator is subjected to the environmental conditions specified herein.
- 3.5.8 <u>Maximum Allowable Leak Rate.</u> The maximum allowable leakage rate shall be as specified by MIL-STD-883, method 1014 based on the internal cavity volume. The hermetic seal (fine and gross leak) tests shall be in accordance with MIL-STD-883, Method 1014, with Leak Rate 5x10⁻⁸ atm-cm³/s Helium gas unless otherwise specified.
- 3.5.9 <u>Weight</u>. The maximum weight of the crystal oscillator shall be defined on page 34.
- 3.5.10 <u>Delta Criteria.</u> The crystal oscillator shall meet the parameter delta criteria post burn-in called out in the detail specification. The change in the parameter (delta) shall be calculated between the initial measurement and the present (interim or final) measurement.
- 3.5.11 <u>Marking</u>. Each unit shall be permanently marked with the manufacturer's name or symbol, part number, frequency, lot date code number, and serial number. The unit shall be marked with the outline of an equilateral triangle near pin 1 to show that it contains devices which are sensitive to electrostatic discharge.
- 3.5.12 <u>Traceability.</u> Material, element and process traceability requirements shall be as specified by MIL-PRF-55310.
- 3.5.13 <u>Rework Provisions</u>. Rework shall be in accordance with the provisions of MIL-PRF-55310.

4 QUALITY ASSURANCE PROVISIONS

4.1 <u>Responsibility for Inspection.</u> Unless otherwise specified in the contract or purchase order, the supplier shall be responsible for the performance of all inspection requirements as specified. Customer reserves the right to perform any of the inspections set forth in the specification where such inspections are deemed necessary to assure supplies and services conform to prescribed requirements, and to return any product failing to meet the specified requirements.

GENERAL SPECIFICATION (Cont'd)

- 4.2 <u>Screening</u>. Hybrid crystal oscillators shall have been subjected to and successfully passed all the screening tests as applicable in Tables I, II, III, IV, V, VI.
- 4.2.1 <u>Nondestructive Bondpull.</u> 100% Non-destructive bondpull applicable to screening S, A, C, N.
- 4.2.2 <u>Percent Defective Allowable (PDA).</u> The percent defective allowable shall be 2% (Screening Option S, A, C) or 5% (Screening Option N) 10% (Screening Option B) or one device, whichever is greater. PDA accountability shall be based on failures occurring during the second half of burn-in only. PDA shall be applicable to the +25 °C static parameters as specified in the delta criteria.
- 4.3 <u>Quality Conformance Inspection (QCI)</u>. Shall be as outlined in the QCI section for each screening option here-in. All records shall be traceable to the lot number and unit serial number. Samples used for Group A that pass all tests may be delivered on contract prior to QCI completion.
- 4.4 <u>Customer Source Inspection</u>. Provisions for periodic in-process source inspection by Customer shall be included in the supplier's manufacturing plan. Q-Tech will notify customer when the deliverable devices are ready for an in-process source inspection. The inspection points shall, as a minimum, be:
 - a) Pre crystal mount visual inspection.
 - b) Post crystal mount visual inspection (before final Au adjust).
 - c) Prior to shipment inspection.
- 4.5 <u>Retention of Records.</u> All records pertaining to the design, processes, incoming receiving, in-process inspections, screening and quality conformance inspection, product lot identification, product traceability, failure reports and analyses etc., shall be retained by the vendor for a period of seven years from the date of product shipment.

5 PREPARATION FOR DELIVERY

- 5.1 <u>Packaging.</u> The requirements for packaging shall be in accordance with MIL-PRF-55310.
- 5.2 <u>Electrostatic Discharge Sensitivity.</u> Meet MIL-STD-883, Method 3015, Class 1C HBM

6 NOTES

- 6.1 <u>Ordering Data.</u> The contract or purchase order should specify the following:
 - a) Customer or Q-Tech part number.
 - b) Quality Conformance Inspection requirements.
 - c) Requirements for special technical documentation.
 - d) Test data requirements.
 - e) Special packaging.
 - f) Requirement for source inspection and notification.
- 6.2 <u>Handling</u>. The devices used must be handled with certain precautions to avoid damage due to electrostatic discharge.
- 6.3 <u>Certificate of Conformance</u>. Deliverables include a certificate of conformance to this specification, signed by an authorized representative of the manufacturer.

HIGH RELIABILITY HYBRID CRYSTAL CLOCK OSCILLATORS 18 to 5.0Vdc - 15kHz to 250MHz

	Product		Output		Frequency	0.41	Pin
Photo	QT	Package	Logic	Vdd (V)	Range	Outline	Connection
	QT101 QT201 QT301	Transistor Outline (TO-5) 8 Pin	CMOS TTL	1.8Vdc, 2.5Vdc, 3.3Vdc, 5.0Vdc	450kHz to 85MHz		
	QT106 QT206 QT306	Dual In-Line (DIP-14) 14 Pin	CMOS TTL	1.8Vdc, 2.5Vdc, 3.3Vdc, 5.0Vdc	15kHz to 200MHz	Page	
	QT141 QT241 QT341	Dual In-Line (DIP-14) 4 Pin	CMOS TTL	1.8Vdc, 2.5Vdc, 3.3Vdc, 5.0Vdc	15kHz to 200MHz	29	
	QT142 QT242 QT342	Dual In-Line (DIP-14) 4 Pin	CMOS TTL	1.8Vdc, 2.5Vdc, 3.3Vdc, 5.0Vdc	15kHz to 200MHz		
S	QT122 QT222 QT322	Flat Pack (FP) 16 Pin	CMOS TTL LVDS LVPECL	1.8Vdc, 2.5Vdc, 3.3Vdc, 5.0Vdc	450kHz to 250MHz		
	QT128 QT228 QT328	Flat Pack (FP) 16 Pin Formed Lead	CMOS TTL LVDS LVPECL	1.8Vdc, 2.5Vdc, 3.3Vdc, 5.0Vdc	450kHz to 250MHz		Page 33
A STREET	QT125 QT225 QT325	Flat Pack (FP) 20 Pin	CMOS TTL LVDS LVPECL	1.8Vdc, 2.5Vdc, 3.3Vdc, 5.0Vdc	15kHz to 250MHz		
	QT127 QT227 QT327	Flat Pack (FP) 20 Pin Formed Lead	CMOS TTL LVDS LVPECL	1.8Vdc, 2.5Vdc, 3.3Vdc, 5.0Vdc	15kHz to 250MHz	Page 30	
	QT126 QT226 QT326	Flat Pack (FP) 14 Pin	CMOS TTL LVDS	1.8Vdc, 2.5Vdc, 3.3Vdc, 5.0Vdc	15kHz to 250MHz		
	QT129 QT229 QT329	Flat Pack (FP) 14 Pin Formed Lead	CMOS TTL LVDS	1.8Vdc, 2.5Vdc, 3.3Vdc, 5.0Vdc	15kHz to 250MHz		
A Q-TECH QT130L10A S0.000MHz D/C S/N	QT130/QT131 QT230/QT231 QT330/QT331	Flat Pack (FP) 12 Pin	CMOS TTL LVDS LVPECL	1.8Vdc, 2.5Vdc, 3.3Vdc, 5.0Vdc	15kHz to 250MHz		

CLASS B+ PRODUCT OFFERINGS

Notes:

1. LVDS and LVPECL are only available in 2.5V and 3.3V.

2. TTL is only available in 5.0V.

3. Not all frequencies ranges listed are available for all logic types. See Pages 20 - 24 for available frequencies for each logic type/package.

HIGH RELIABILITY HYBRID CRYSTAL CLOCK OSCILLATORS

1.8 to 5.0Vdc - 15kHz to 250MHz

CLASS B+	PRODUCT	OFFERINGS
----------	---------	------------------

Photo	Product QT	Package	Output Logic	Vdd (V)	Frequency Range	Outline	Pin Connection
	QT178 QT278 QT378	Surface Mount (SMD) 4 Pin J-Lead	CMOS TTL	1.8Vdc, 2.5Vdc, 3.3Vdc, 5.0Vdc	15kHz to 162.5 MHz		
N	QT188 QT288 QT388	Surface Mount (SMD) 4 Pin J-Lead	CMOS TTL	1.8Vdc, 2.5Vdc, 3.3Vdc, 5.0Vdc	450kHz to 162.5 MHz		
-	QT189 QT289 QT389	4 Pin Thru-hole	CMOS TTL	1.8Vdc, 2.5Vdc, 3.3Vdc, 5.0Vdc	450kHz to 162.5 MHz		
A	QT190 QT290 QT390	Surface Mount (SMD) 4 Pin Gull Wing	CMOS TTL	1.8Vdc, 2.5Vdc, 3.3Vdc, 5.0Vdc	450kHz to 162.5 MHz	Page 31 & 32	Page 33
A	QT192 QT292 QT392	Surface Mount (SMD) 4 Pin Formed Lead	CMOS TTL	1.8Vdc, 2.5Vdc, 3.3Vdc, 5.0Vdc	450kHz to 162.5 MHz		
P	QT193 QT293 QT393	Surface Mount (SMD) 6 Pin Formed Lead	CMOS TTL LVDS LVPECL	1.8Vdc, 2.5Vdc, 3.3Vdc, 5.0Vdc	450kHz to 250 MHz		
We	QT194 QT294 QT394	Surface Mount (SMD) 6 Pin Gull Wing	CMOS TTL LVDS LVPECL	1.8Vdc, 2.5Vdc, 3.3Vdc, 5.0Vdc (Note 1)	450kHz to 250 MHz		

Notes:

1. LVDS and LVPECL are only available in 2.5V and 3.3V.

2. TTL is only available in 5.0V.

3. Not all frequencies ranges listed are available for all logic types. See Pages 20 - 24 for available frequencies for each logic type/package.

HIGH RELIABILITY HYBRID CRYSTAL CLOCK OSCILLATORS 18 to 5.0Vdc - 15kHz to 250MHz

			_			-	
Photo	Product QT	Package	Output Logic	Vdd (V)	Frequency Range	Outline	Pin Connection
	QT184 QT284 QT384	5x7mm Surface Mount (SMD) 4 Pads	CMOS TTL	1.8Vdc, 2.5Vdc, 3.3Vdc, 5.0Vdc	500kHz to 162.5 MHz		
F	QT181 QT281 QT381	5x7mm 4 Pin Thru-hole	CMOS TTL	1.8Vdc, 2.5Vdc, 3.3Vdc, 5.0Vdc	500kHz to 162.5 MHz	Page	
	QT182 QT282 QT382	5x7mm Surface Mount (SMD) 4 Pin Formed Lead	CMOS TTL	1.8Vdc, 2.5Vdc, 3.3Vdc, 5.0Vdc	500kHz to 162.5 MHz	31 & 32	
	QT183 QT283 QT383	5x7mm Surface Mount (SMD) 4 Pin Gull Wing	CMOS TTL	1.8Vdc, 2.5Vdc, 3.3Vdc, 5.0Vdc	500kHz to 162.5 MHz		Dago
	QT185 QT285 QT385	5x7mm Surface Mount (SMD) 6 Pads	CMOS LVDS LVPECL	1.8Vdc, 2.5Vdc, 3.3Vdc, 5.0Vdc	80MHz to 162.5MHz		33
F	QT186 QT286 QT386	5x7mm 6 Pin Thru-hole	CMOS LVDS LVPECL	1.8Vdc, 2.5Vdc, 3.3Vdc, 5.0Vdc	80MHz to 162.5MHz	Page	
Open and the second	QT187 QT287 QT387	5x7mm Surface Mount (SMD) 6 Pin Formed Lead	CMOS LVDS LVPECL	1.8Vdc, 2.5Vdc, 3.3Vdc, 5.0Vdc	80MHz to 162.5MHz	31 & 32	
A	QT180 QT280 QT380	5x7mm Surface Mount (SMD) 6 Pin Gull Wing	CMOS LVDS LVPECL	1.8Vdc, 2.5Vdc, 3.3Vdc, 5.0Vdc	80MHz to 162.5MHz		

CLASS B+ PRODUCT OFFERINGS

Notes:

1. LVDS and LVPECL are only available in 2.5V and 3.3V.

2. TTL is only available in 5.0V.

3. Not all frequencies ranges listed are available for all logic types. See Pages 20 - 24 for available frequencies for each logic type/package.

HIGH RELIABILITY HYBRID CRYSTAL CLOCK OSCILLATORS 18 to 5.0Vdc - 15kHz to 250MHz

SCREENING OPTIONS SUMMARY

	Screening	Screening	Screening	Screening	Screening	Screening
	D Modified MIL-PRF-38534 Class K	A MIL-PRF-55310 Level S	Modified MIL-PRF-55310 Level S	IN EEE-INST-002 Level 1	B Modified MIL-PRF-55310 Level B	E . Engineering Model
Test Description	See Details in Table I (Pages 9 - 10)	See Details in Table II (Page 11 - 12)	See Details in Table III (Page 13 - 14)	See Details in Table IV (Page 15 - 16)	See Details in Table V (Page 17 - 18)	See Details in Table VI (Page 19)
Non Destructive Bond Pull	√	\checkmark	\checkmark	\checkmark	N/A	N/A
Internal Visual	√	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Stabilization Bake	1	\checkmark	\checkmark	\checkmark	\checkmark	√
Random Vibration	N/A	\checkmark	\checkmark	N/A	N/A	N/A
Thermal Shock	N/A	\checkmark	\checkmark	\checkmark	N/A	N/A
Temperature Cycling	1	\checkmark	\checkmark	\checkmark	\checkmark	N/A
Constant Acceleration	1	\checkmark	\checkmark	\checkmark	\checkmark	N/A
Particle Impact Noise Detection (PIND)	1	\checkmark	\checkmark	\checkmark	√	N/A
Pre Burn-In Electrical	1	\checkmark	\checkmark	\checkmark	\checkmark	N/A
Burn-In # 1	✓ (160 Hrs at +125°C)	✓ (240 Hrs at +125°C)	✓ (240 Hrs at +125°C)	✓ (240 Hrs at +125°C)	✓ (160 Hrs at +125°C)	N/A
Interim Electrical	1	N/A	N/A	N/A	N/A	N/A
Burn-In # 2	✓ (160 Hrs at +125°C)	N/A	N/A	N/A	N/A	N/A
Final Electrical	1	√	\checkmark	\checkmark	√	\checkmark
Percent Defective Allowance (PDA)	1	1	\checkmark	\checkmark	1	N/A
Seal Fine Leak	1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Seal Gross Leak	1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Radiographic Inspection	1	\checkmark	N/A	N/A	N/A	N/A
Frequency Aging 30 days	1	100% Group B Tested	N/A	~	(QCI Group B)	N/A
External Visual	✓	✓	\checkmark	\checkmark	✓	\checkmark

Group A Inspection (QCI)	✓ See Details in Table I-c	✓ MIL-PRF-55310 Level S	✓ MIL-PRF-55310 Level S	✓ EEE-INST-002 Level 1	✓ MIL-PRF-55310 per Table V-b	N/A
Group B Inspection (Aging)	N/A (aging performed in screening)	✓ MIL-PRF-55310 Level S	N/A	N/A (aging performed in screening)	MIL-PRF-55310 (Optional)	N/A

Note: If breadboard model is desired, refer to normal QT products or consult with Q-Tech.

Screening - Option S (Modified MIL-PRF-38534, Class K)

Table I

(Example: QT178LD10S-50.000MHz)

Test Description	MIL Standard Method Condition Qu		Qty	Comments	
Non Destructive Bond Pull	883	2023		100%	
Internal Visual	883	2017	Class K	100%	Completed During Assembly
Stabilization Bake	883	1008	C 48 hours at +150°C	100%	1 0 9
Temperature Cycling	883	1010	С	100%	10 cycles
Constant Acceleration	883	2001	А	100%	Y1 direction only (5,000g's)
Particle Impact Noise Detection (PIND)	883	2020	В	100%	
Pre Burn-In Electrical	Refer to Tabl	e I-b and Det	ail Specifications	100%	
Burn-In # 1	883	1015	+125°C for 160 hours	100%	With load and nominal supply voltage
Interim Electrical	Refer to Tabl	e I-b and Det	ail Specifications	100%	
Burn-In # 2	883	1015	+125°C for 160 hours	100%	With load and nominal supply voltage
Final Electrical	Refer to Table	I-a, I-b and D	Detail Specifications	100%	
Percent Defective Allowance (PDA)	38534		Refer to table I-a below		PDA = 2% (Supply Current only)
Seal Fine Leak	883	1014	A1 or B1	100%	(See Note 2)
Seal Gross Leak	883	1014	C, B2 or B3	100%	(See Note 2)
Radiographic Inspection	883	2012	Class S	100%	
Frequency Aging 30 days	55310		+70°C±3°C Refer to Table I-a below	100%	(See Note 1)
External Visual	883	2009		100%	

NOTES:

1. Normally frequency aging is up to 30 days. However, aging may be ceased if value at 15 days is half than the limit of 30-day aging value, or continued up to 90 days if value exceeds 30 day aging limit.

2. Unless otherwise specified, Q-Tech uses conditions A1 and C for Fine and Gross Leak. Fine Leak Rate is 5x10⁻⁸ atm-cm³/s Helium gas. Condition B3 is used if free internal cavity volume is < 0.1cc.

Table I-a Delta Limits

Tests	Parameters	Symbol	Delta Limits
Burn-In # 2	Supply current	Icc	$\pm 10\%$ of initial reading
Life Test after 1,000 hours at +125°C	Supply current	Icc (Life)	±10% of initial reading
Frequency Aging after 30 days at +70°C	Output Frequency	Fo	Refer to detailed specifications

HIGH RELIABILITY HYBRID CRYSTAL CLOCK OSCILLATORS 18 to 5.0Vdc - 15kHz to 250MHz

Screening - Option S (Continued)

Table I-bElectrical Test - Measurement Requirements

Parameters	Pre BI at 25°C	Pre BI Low Temp	Pre BI High Temp	Interim BI at 25°C	Post BI at 25°C	Post BI Low Temp	Post BI High Temp
Output Frequency	√	~	\checkmark	√	\checkmark	~	\checkmark
Frequency/Temperature Stability	√	√	\checkmark	√	\checkmark	✓	\checkmark
Frequency/Voltage Stability	1				\checkmark	✓	\checkmark
Input Current	√			√	\checkmark	✓	√
Output Voltage (VOH, VOL) (Note 3)	√	√	\checkmark	√	\checkmark	✓	√
Waveform	√	√	\checkmark	√	\checkmark	✓	\checkmark
Duty Cycle	√	√	\checkmark	√	\checkmark	✓	√
Rise and Fall Times	√			√	\checkmark	✓	√
Start-up Time	\checkmark			\checkmark	\checkmark	\checkmark	\checkmark
Tristate Function (If Applicable)	\checkmark				\checkmark	\checkmark	\checkmark

NOTES:

1. Frequency Stability code 19, measure frequency parameter at $+23^{\circ}C \pm 1^{\circ}C$.

2. Frequency accuracy (and/or frequency/temperature stability) limits for post steady state life electrical testing shall be relaxed by six times the projected first year aging limit as specified in this specification. If no such limit is specified, the limit shall be relaxed ± 60 ppm. Notwithstanding, device performance that appears out-of-family shall be subjected to further evaluation.

3. Differential Output Voltage (VOD) is also tested for LVDS output logic.

Table I-cGroup A Inspection (100%)

Test Description	Condition
Supply Current	25°C and temperature extremes
Initial Accuracy at Reference Temperature	25°C
Frequency - Temperature Stability	Over specified operating temperature range, measure output frequency at minimum ten equispaced points of the temperature extremes.
Frequency - Voltage Tolerance	
Output Voltages (VOH, VOL) (Note 2)	
Duty Cycle (output waveform symmetry)	25°C and temperature extremes
Output Rise and Fall Times	25 C and temperature extremes
Start-up Time	
Tristate Function (If Applicable)	

NOTES:

- 1. Frequency Stability code 19, measure frequency parameter at $+23^{\circ}C \pm 1^{\circ}C$.
- 2. Differential Output Voltage (VOD) is also tested for LVDS output logic.
- 3. All electrical performance tests shall be performed during Group A with the exception of any tests performed as part of final electrical testing during 100 percent screening.

QCI Options (per MIL-PRF-55310, level S)

• Group C Inspection per MIL-PRF-55310, Level S (See details on Table X)

QCI (per MIL-PRF-38534, Class K-Modified) (To be specified on Purchase Order)

- Group B Inspection per MIL-PRF-38534, Class K-Modified (See details on Table VII)
- Group C Inspection per MIL-PRF-38534, Class K-Modified (Delta Limits per Table I-a) (See details on Table VIII)
- Group D Inspection per MIL-PRF-38534, Class K-Modified (See details on Table IX)

HIGH RELIABILITY HYBRID CRYSTAL CLOCK OSCILLATORS

1.8 to 5.0Vdc - 15kHz to 250MHz

Screening Option A (MIL-PRF-55310, Level S)

(Example: QT188ACD10A-40.000MHz)

Table II

Test Description	MIL Standard	Method	Condition	Qty	Comments
Non Destructive Bond Pull	883	2023	Level S	100%	
Internal Visual	883	2017 2032	Class K	100%	Completed During Assembly
Stabilization Bake	883	1008	C 48 hours at +150°C	100%	
Pre-Random Vibration Electrical	Refer to Tab	le II-a and De	etail Specification	100%	
Random Vibration	883	2026	I-B	100%	Three mutually perpendicular directions
Post-Random Vibration Electrical	Refer to Tab	le II-a and De	etail Specification	100%	
Thermal Shock	883	1011	А	100%	
Temperature Cycling	883	1010	С	100%	10 cycles
Constant Acceleration	883	2001	А	100%	Y1 direction only (5,000g's)
Seal Fine and Gross Leak	883	1014	A1, A2 or B1 B2 or B3	100%	See Note 2
Particle Impact Noise Detection (PIND)	883	2020	А	100%	
Pre Burn-In Electrical	Refer to Tab	le II-a and De	etail Specification	100%	
Burn-In	883	1015	+125°C for 240 hours minimum	100%	With load and nominal supply voltage
Final Electrical	Refer to Tab	le II-a and De	etail Specification	100%	
Percent Defective Allowance (PDA)	55310		Level S		PDA=2% or 1 unit (Supply Current \pm 10%, VOH \pm 10% & VOL \pm 0.1V at 25°C only)
Radiographic Inspection	883	2012	Level S	100%	
External Visual	883	2009		100%	

NOTES:

1. 100% QCI Group A (see Table II-b) and Group B (Aging) (see Table II-c) Inspections are performed.

2. Conditions A1 and C are used if B1 and B2 are not purchased. Condition B3 is used if free internal cavity volume is < 0.1cc.

Table II-a

Electrical Test – Measurement Requirements

Parameters	Pre RV at 25°C	Post RV at 25°C	Pre BI at 25°C	Pre BI Low Temp	Pre BI High Temp	Post BI at 25°C	Post BI Low Temp	Post BI High Temp
Output Frequency	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Frequency/Temperature Stability			\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Frequency/Voltage Stability			\checkmark			\checkmark		
Input current	\checkmark	\checkmark	\checkmark			\checkmark	\checkmark	\checkmark
Output Voltage (VOH, VOL) (Note 2)			\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Waveform			\checkmark	√	\checkmark	\checkmark	\checkmark	\checkmark
Duty cycle			\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Rise and Fall Times			\checkmark			\checkmark	\checkmark	\checkmark
Start-up Time			\checkmark			\checkmark	\checkmark	\checkmark
Tristate Function (If Applicable)			\checkmark			\checkmark	\checkmark	\checkmark

NOTES:

1. Frequency Stability code 19, measure frequency parameter at $+23^{\circ}C \pm 1^{\circ}C$.

2. Differential Output Voltage (VOD) is also tested for LVDS output logic.

1.8 to 5.0Vdc - 15kHz to 250MHz

Screening - Option A (Continued)

Table II-bGroup A Inspection (100%)

Test Description	Condition					
Supply Current	25°C and temperature extremes					
Initial Accuracy at Reference Temperature	25°C					
Frequency - Temperature Stability	Over specified operating temperature range, measure output frequency at minimum ten equispaced points of the temperature extremes.					
Frequency - Voltage Tolerance						
Output Voltages (VOH, VOL) (Note 2)	- 25°C and temperature extremes					
Duty Cycle (output waveform symmetry)						
Output Rise and Fall Times						
Start-up Time						
Tristate Function (If Applicable)						
Overvoltage Survivability	Apply over voltage 20% above maximum specified supply voltage for 1 minute with no performance degradation					

NOTES:

- 1. Frequency Stability code 19, measure frequency parameter at $+23^{\circ}C \pm 1^{\circ}C$.
- 2. Differential Output Voltage (VOD) is also tested for LVDS output logic.
- 3. Subgroup 2 (Solderability) is not required unless otherwise specified on the purchase order.
- 4. All electrical performance tests shall be performed during Group A with the exception of any tests performed as part of final electrical testing during 100 percent screening.

Table II-c

Group B Inspection (100%)

Test Description	Condition
Frequency Aging	MIL-PRF-55310, Paragraph 4.8.35

NOTES:

1. Frequency aging is up to 30 days. Aging may be ceased if value at 15 days is half than the limit of 30-day aging value.

QCI (per MIL-PRF-55310, Level S) (To be specified on Purchase Order)

• Group C Inspection per MIL-PRF-55310, Level S (See details on Table X)

QCI (per MIL-PRF-38534, Class K-Modified) (To be specified on Purchase Order)

- Group B Inspection per MIL-PRF-38534, Class K-Modified (See details on Table VII)
- Group C Inspection per MIL-PRF-38534, Class K-Modified (Delta Limits per Table I-a) (See details on Table VIII)
- Group D Inspection per MIL-PRF-38534, Class K-Modified (See details on Table IX)

HIGH RELIABILITY HYBRID CRYSTAL CLOCK OSCILLATORS 1.8 to 5.0Vdc - 15kHz to 250MHz

Screening Option C (Modified MIL-PRF-55310, Level S) (Example: QT188LD10C-40.000MHz)

Table III

Test Description	MIL Standard	Method	Condition	Qty	Comments
Non Destructive Bond Pull	883	2023	Level S	100%	
Internal Visual	883	2017 2032	Class K	100%	Completed During Assembly
Stabilization Bake	883	1008	C 48 hours at +150°C	100%	
Pre-Random Vibration Electrical	Refer to Tabl	le III-a and D	etail Specification	100%	
Random Vibration	883	2026	I-B	100%	Three mutually perpendicular directions
Post-Random Vibration Electrical	Refer to Tabl	Refer to Table III-a and Detail Specification		100%	
Thermal Shock	883	1011	А	100%	
Temperature Cycling	883	1010	С	100%	10 cycles
Constant Acceleration	883	2001	А	100%	Y1 direction only (5,000g's)
Seal Fine and Gross Leak	883	1014	A1, A2 or B1 B2 or B3	100%	See Note 2
Particle Impact Noise Detection (PIND)	883	2020	А	100%	
Pre Burn-In Electrical	Refer to Tabl	e III-a and D	etail Specification	100%	
Burn-In	883	1015	+125°C for 240 hours minimum	100%	With load and nominal supply voltage
Final Electrical	Refer to Tabl	le III-a and D	etail Specification	100%	
Percent Defective Allowance (PDA)	55310		Level S		PDA=2% or 1 unit (Supply Current \pm 10%, VOH \pm 10% & VOL \pm 0.1V at 25°C only)
External Visual	883	2009		100%	

NOTES:

1. 100% QCI Group A Inspection is performed. See Table III-b

2. Conditions A1 and C are used if B1 and B2 are not purchased. Condition B3 is used if free internal cavity volume is < 0.1cc.

Table III-a

Electrical Test – Measurement Requirements

Parameters	Pre RV at 25°C	Post RV at 25°C	Pre BI at 25°C	Pre BI Low Temp	Pre BI High Temp	Post BI at 25°C	Post BI Low Temp	Post BI High Temp
Output Frequency	1	1	\checkmark	1	\checkmark	\checkmark	\checkmark	√
Frequency/Temperature Stability			\checkmark	1	\checkmark	\checkmark	\checkmark	\checkmark
Frequency/Voltage Stability			\checkmark			\checkmark		
Input current	\checkmark	\checkmark	\checkmark			\checkmark	\checkmark	\checkmark
Output Voltage (VOH, VOL) (Note 2)			\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Waveform			\checkmark	\checkmark	~	\checkmark	\checkmark	\checkmark
Duty cycle			\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Rise and Fall Times			\checkmark			\checkmark	\checkmark	\checkmark
Start-up Time			\checkmark			\checkmark	\checkmark	\checkmark
Tristate Function (If Applicable)			\checkmark			\checkmark	1	1

NOTES:

1. Frequency Stability code 19, measure frequency parameter at $+23^{\circ}C \pm 1^{\circ}C$.

2. Differential Output Voltage (VOD) is also tested for LVDS output logic.

Screening - Option C (Continued)

Table III-bGroup A Inspection (100%)

Test Description	Condition					
Supply Current	25°C and temperature extremes					
Initial Accuracy at Reference Temperature	25°C					
Frequency - Temperature Stability	Over specified operating temperature range, measure output frequency at minimum ten equispaced points of the temperature extremes.					
Frequency - Voltage Tolerance						
Output Voltages (VOH, VOL) (Note 2)						
Duty Cycle (output waveform symmetry)	25°C and temperature extremes					
Output Rise and Fall Times	- 25°C and temperature extremes					
Start-up Time						
Tristate Function (If Applicable)						

NOTES:

- 1. Frequency Stability code 19, measure frequency parameter at $+23^{\circ}C \pm 1^{\circ}C$.
- 2. Differential Output Voltage (VOD) is also tested for LVDS output logic.
- 3. All electrical performance tests shall be performed during Group A with the exception of any tests performed as part of final electrical testing during 100 percent screening.

QCI (per MIL-PRF-55310, Level S) (To be specified on Purchase Order)

• Group C Inspection per MIL-PRF-55310, Level S (*See details on Table X*)

QCI (per MIL-PRF-38534, Class K-Modified) (To be specified on Purchase Order)

- Group B Inspection per MIL-PRF-38534, Class K-Modified (See details on Table VII)
- Group C Inspection per MIL-PRF-38534, Class K-Modified (Delta Limits per Table I-a) (See details on Table VIII)
- Group D Inspection per MIL-PRF-38534, Class K-Modified (See details on Table IX)

HIGH RELIABILITY HYBRID CRYSTAL CLOCK OSCILLATORS

1.8 to 5.0Vdc - 15kHz to 250MHz

Screening Option N (EEE-INST-002)

Ta	bl	e	IV	
		_		

(Example: QT188ND10N-40.000MHz)

Test Description	MIL Standard	Method	Condition	Qty	Comments
Non Destructive Bond Pull	883	2023		100%	
Internal Visual	883	2017 2032	Class K	100%	Completed During Assembly
Stabilization Bake	883	1008	C 48 hours at +150°C	100%	
Thermal Shock	883	1011	А	100%	
Temperature Cycling	883	1010	В	100%	10 cycles
Constant Acceleration	883	2001	А	100%	Y1 direction only (5,000g's)
Particle Impact Noise Detection (PIND)	883	2020	В	100%	
Pre Burn-In Electrical	Refer to Tabl	e IV-a and D	etail Specification	100%	
Burn-In	883	1015	+125°C for 240 hours minimum	100%	With load and nominal supply voltage
Final Electrical	Refer to Tabl	e IV-a and D	etail Specification	100%	
Frequency Aging	55310		$70^{\circ}C \pm 3^{\circ}C$	100%	30 Days
Percent Defective Allowance (PDA)	55310		Level S		PDA=5% (Supply Current only Frequency Aging)
Radiographic Inspection	883	2012	Class S	100%	
Seal Fine and Gross Leak	883	1014	A1 or B1 C	100%	See Note 2
External Visual	883	2009		100%	

NOTES:

1. 100% QCI Group A Inspections are performed. See Table IV-b

2. Unless otherwise specificed, Q-Tech uses conditions A1 and C for Fine and Gross Leak. Fine Leak Rate is 5x10⁻⁸ atm-cm³/s Helium gas. Condition B3 is used if free internal cavity volume is < 0.1cc.

Table IV-a Electrical Test – Measurement Requirements

Parameters	Pre BI at 25°C	Pre BI Low Temp	Pre BI High Temp	Post BI at 25°C	Post BI Low Temp	Post BI High Temp
Output Frequency	\checkmark	√	\checkmark	\checkmark	\checkmark	\checkmark
Frequency/Temperature Stability	\checkmark	√	\checkmark	\checkmark	\checkmark	√
Frequency/Voltage Stability	\checkmark			\checkmark		
Input current	\checkmark			\checkmark	\checkmark	√
Output Voltage (VOH, VOL) (Note 2)	\checkmark	√	\checkmark	\checkmark	\checkmark	\checkmark
Waveform	\checkmark	√	\checkmark	\checkmark	\checkmark	\checkmark
Duty cycle	\checkmark	√	\checkmark	\checkmark	\checkmark	\checkmark
Rise and Fall Times	\checkmark			\checkmark	\checkmark	\checkmark
Start-up Time	\checkmark			\checkmark	\checkmark	\checkmark
Tristate Function (If Applicable)	\checkmark			\checkmark	\checkmark	\checkmark

NOTES:

1. Frequency Stability code 19, measure frequency parameter at $+23^{\circ}C \pm 1^{\circ}C$.

2. Differential Output Voltage (VOD) is also tested for LVDS output logic.

Screening - Option N (Continued)

Table IV-b Group A Inspection (100%)

Test Description	Condition			
Supply Current	25°C and temperature extremes			
Initial Accuracy at Reference Temperature	25°C			
Frequency - Temperature Stability	Over specified operating temperature range, measure output frequency at minimum ten equispaced points of the temperature extremes.			
Frequency - Voltage Tolerance				
Output Voltages (VOH, VOL) (Note 2)				
Duty Cycle (output waveform symmetry)	25°C and temperature extremes			
Output Rise and Fall Times				
Start-up Time				
Tristate Function (If Applicable)				
Oscillator Supply Voltage	Measure voltage magnitude, tolerance, polarity, regulation, peak to peak ripple, ripple frequency and noise across oscillator input terminals with specified load			
Overvoltage Survivability	Apply over voltage 20% above maximum specified supply voltage for 1 minute with no performance degradation			

NOTES:

1. Frequency Stability code 19, measure frequency parameter at $+23^{\circ}C \pm 1^{\circ}C$.

2. Differential Output Voltage (VOD) is also tested for LVDS output logic.

Table IV-cQualification Test Requirements (Note 1)

Test Description	Test Methods and Conditions	Quantity
GROUP 1 Frequency Aging	MIL-PRF-55310, par. 4.8.35	8(0)
GROUP 2 (Note 3) Vibration Sine Mechanical Shock	MIL-STD 202, Method 204 and MIL-PRF-55310, par. 4.8.39.1 MIL-STD-202, Method 213 and MIL-PRF-55310, par 4.8.41	8(0)
GROUP 3 (Note 3) Thermal Shock	MIL-STD-202, Method 107 and MIL-PRF-55310, par. 4.8.45	4(0)
GROUP 4 (Note 3) Resistance to Soldering Heat Moisture Resistance Terminal Strength Solderability Resistance to Solvents	MIL-STD 202, Method 210 and MIL-PRF-55310, par. 4.8.49 MIL-STD 202, Method 106 and MIL-PRF-55310, par. 4.8.50 MIL-STD 202, Method 211 and MIL-PRF-55310, par 4.8.52 MIL-STD 202, Method 208, each lead MIL-STD 202, Method 215	2(0)
GROUP 5 (Note 5, 6) Internal Gas Analysis	MIL-STD 883, Method 1018, 5000ppm at 100°C	3(0) or 5(1)

NOTES: 1) Performed only if specified on the Purchase Order.

2) Sample units shall have previously met all requirements of the previous test of Table IV-a.

3) Samples for this group come from Group 1 samples

4) Generic data less than 1 year old is an acceptable basis for qualification if it satisfies the requirements specified herein.

5) Applies only to hybrid microcircuit construction. Generic data is not acceptable.

6) Units tested in Group 5 shall be independent units not tested in Groups 1 - 4.

HIGH RELIABILITY HYBRID CRYSTAL CLOCK OSCILLATORS 18 to 5.0Vdc - 15kHz to 250MHz

Screening - Option B (Modified MIL-PRF-55310, Level B)

Table V

(Example: QT178LD10B-50.000MHz)

Test Description	MIL Standard	Method	Condition	Qty	Comments
Internal Visual	883	2017	Level B	100%	
Stabilization Bake	883	1008	C 48 hours at +150°C	100%	Completed During Assembly
Temperature Cycling	883	1010	В	100%	10 cycles
Constant Acceleration	883	2001	А	100%	Y1 direction only (5,000g's)
Particle Impact Noise Detection (PIND)	883	2020	В	100%	
Pre Burn-In Electrical	Refer to Tab	le V-a and D	etail Specification	100%	
Burn-In	883	1015	+125°C for 160 hours	100%	With load and nominal supply voltage
Final Electrical	Refer to Tab	le V-a and D	etail Specification	100%	
Percent Defective Allowance (PDA)	38534				PDA=10% (Supply Current only)
Seal Fine Leak	883	1014	A1	100%	
Seal Gross Leak	883	1014	С	100%	
External Visual	883	2009		100%	

NOTES:

1. 100% Group A QCI test per Table V-b.

Table V-aElectrical Test - Measurement Requirements

Parameters	Pre BI at 25°C	Pre BI Low Temp	Pre BI High Temp	Post BI at 25°C	Post BI Low Temp	Post BI High Temp
Output Frequency	\checkmark	√	\checkmark	\checkmark	\checkmark	\checkmark
Frequency/Temperature Stability	\checkmark	√	\checkmark	\checkmark	\checkmark	\checkmark
Frequency/Voltage Stability	\checkmark			\checkmark		
Input current	\checkmark			\checkmark	\checkmark	\checkmark
Output Voltage (VOH, VOL) (Note 2)	\checkmark	√	\checkmark	\checkmark	\checkmark	\checkmark
Waveform	\checkmark	√	\checkmark	\checkmark	\checkmark	\checkmark
Duty cycle	\checkmark	√	\checkmark	\checkmark	\checkmark	\checkmark
Rise and Fall Times	\checkmark			\checkmark	\checkmark	\checkmark
Start-up Time	\checkmark			\checkmark	\checkmark	\checkmark
Tristate Function (If Applicable)	\checkmark			\checkmark	\checkmark	\checkmark

NOTES:

1. Frequency Stability code 19, measure frequency parameter at $+23^{\circ}C \pm 1^{\circ}C$.

2. Differential Output Voltage (VOD) is also tested for LVDS output logic.

Screening - Option B (Continued)

Table V-bGroup A Inspection (100%)

Test Description	Condition				
Supply Current	25°C and temperature extremes				
Initial Accuracy at Reference Temperature	25°C and temperature extremes				
Frequency - Temperature Stability	Over specified operating temperature range, measure output frequency at minimum ten equispaced points of the temperature extremes.				
Frequency - Voltage Tolerance					
Output Voltages (VOH, VOL) (Note 2)					
Duty Cycle (output waveform symmetry)	25°C and temperature extremes				
Output Rise and Fall Times	25 C and temperature extremes				
Start-up Time					
Tristate Function					

NOTES:

1. Frequency Stability code 19, measure frequency parameter at $+23^{\circ}C \pm 1^{\circ}C$.

2. Differential Output Voltage (VOD) is also tested for LVDS output logic.

3. All electrical performance tests shall be performed during Group A with the exception of any tests performed as part of final electrical testing during 100 percent screening.

QCI (per MIL-PRF-55310, Level B) (To be specified on Purchase Order)

- Group B (Aging Test)
- Group C (See details on Table X).

QCI Options (per MIL-PRF-38534, Class K-Modified)

- Group B Inspection per MIL-PRF-38534, Class K-Modified (See details on Table VII)
- Group C Inspection per MIL-PRF-38534, Class K-Modified (Delta Limits per Table II) (See details on Table VIII)
- Group D Inspection per MIL-PRF-38534, Class K-Modified (See details on Table IX)

HIGH RELIABILITY HYBRID CRYSTAL CLOCK OSCILLATORS 1.8 to 5.0Vdc - 15kHz to 250MHz

Screening Option E (Engineering Model)

(Example: QT122ACD9E-16.000MHz)

Table VI

Test Description	MIL Standard	Method	Condition	Qty	Comments
Internal Visual	883	2017	Class H	100%	
Stabilization Bake	883	1008	C 48 hours at +150°C	100%	Completed During Assembly
Seal Fine and Gross Leak	883	1014	1014 A1, C		
Final Electrical	Refer to Tabl	e VI-a and D	etail Specification	100%	
Frequency vs. Temperature Stability	55310	Measure ou equispaced the specified temperature	tput frequency at 10 points minimum of d operating e range	100%	
External Visual	883	2009		100%	

Table VI-a Electrical Test – Measurement Requirements

Parameters	Final at 25°C	Final Low Temp	Final High Temp
Output Frequency	\checkmark	✓	\checkmark
Frequency/Temperature Stability	\checkmark	√	\checkmark
Frequency/Voltage Stability	\checkmark	√	\checkmark
Input Current	\checkmark		
Output Voltage (VOH, VOL) (Note 2)	\checkmark		
Waveform	\checkmark		
Duty Cycle	\checkmark		
Rise and Fall Times	\checkmark		
Start-up Time	\checkmark		
Tristate Function (If Applicable)	\checkmark		

NOTES:

1. Frequency Stability code 19, measure frequency parameter at $+23^{\circ}C \pm 1^{\circ}C$.

2. Differential Output Voltage (VOD) is also tested for LVDS output logic.

Engineering model oscillators will have the same design and manufacturing processes as to the flight units. Finished units will be tested over the operating temperature range and 25°C as specified in Table VI-a. No screening test and/or QCI are required.

HIGH RELIABILITY HYBRID CRYSTAL CLOCK OSCILLATORS

1.8 to 5.0Vdc - 15kHz to 250MHz

Electrical Performance Characteristics 15kHz to 85MHz (For FACT +5Vdc and +3.3Vdc CMOS Outputs Using 54ACT3301)

Maximum Ratings

(For FACT +5Vdc and	1+3.3Vdc CMOS Output	s Using 54ACT3301)	

Parameters	Symbol	Min.	Max.	Units
Supply Voltage	Vdd	-0.5	+7	V
Operating Temperature	Top.	-55	+125	°C
Storage Temperature	Tstg	-62	+125	°C
Lead Solder Temperature			260/10	°C/seconds
Package Thermal Resistance	ΘJc		50	°C/W
Junction Temperature			+175	°C

Recommended Operating Conditions

Electrical Denomator	Test Conditions	Limits				Notos	
Electrical Parameter		Min.	Nom.	Max.	Units	Inotes	
	+3 3Vdc	.015		80	MHz	DIP, Flat Packs	
Frequency Range	15.5 V de	.450		70	MHz	Other Packages	
requency runge	+5.0Vdc	.015		85	MHz	DIP, Flat Packs	
		.450	25	85	MHz	Other Packages	
Frequency/Temperature Stability	See temperature codes	-55	+25	+125	°C	(See Note 1)	
Supply Voltage		2.97 4.5	3.3 5.0	3.63 5.5	Vdc Vdc		
Input Current at 3.63Vdc	Measured without load at maximum Vdd			3 6 10 20 30	mA	$\begin{split} 15k &\leq F < 500 \text{kHz} \\ 500k &\leq F < 16 \text{MHz} \\ 16M &\leq F < 32 \text{MHz} \\ 32M &\leq F < 60 \text{MHz} \\ 60M &\leq F \leq 80 \text{MHz} \end{split}$	
Input Current at 5.5Vdc	Measured without load at maximum Vdd			20 25 35 45	mA	15k-<16MHz 16M-<32MHz 32M-<60MHz 60M-85MHz	
Output Voltage VOL				Vdd x 0.1 0.4 (TTL)	Vdc	(See Note 4)	
Output Voltage VOH		Vdd x 0.9 2.4 (TTL)			Vdc	(See Note 4)	
Output Waveform			Square Wave		N/A		
Rise and Fall Time (See Note 4)	See Notes 5 and 6			6	ns	$15k \le F < 30MHz$ 5x7mm: 450kHz $\le F \le 44MHz$	
	See Notes 5 and 6			3	ns	$30M \le F < 85MHz$ $5x7mm: 44M < F \le 85MHz$	
Duty Cycle (See Note 4)	See Notes 5 and 6	45 40	50 50	55 60	% %	$15k \le F < 16MHz$ $16M \le F \le 85MHz$	
Load		15p 6TT	F//10kΩ (CM L to 10TTL (7	OS) ITL)		Per MIL-PRF-55310 loads (See Note 4)	
Frequency Aging - 30 Days	70°C±3°C			±1.5	ppm		
(See Note 2)	70°C±3°C			±3	ppm	5x7 packages only	
Frequency Aging, First Year	70°C±3°C			±5	ppm	(See Note 3)	
Frequency Aging, First Year (5x7 Packages)	70°C±3°C			±10	ppm	(See Note 3)	
Start-up Time	100µs ramp			10	ms		
Output Enable VIH		2.2			Vdc		
Output Disable VIL				0.8	Vdc	Output High Impedance	
	over +10% change	-3		+3		DIP, FP at 5V: $15kHz \le F \le 27MHz$ $36MHz \le F \le 85MHz$	
Frequency Voltage Tolerance	in supply voltage	-4		+4	ppm	DIP, FP at 3.3V and Ceramic, TO pkgs: 15kHz \leq F \leq 27MHz, 36MHz \leq F \leq 85MHz	
		-5		+5		27MHz < F < 36MHz	

NOTES:

1. Frequency stability compared to nominal frequency including initial accuracy at 25°C, load, and supply variations ±10%. Frequency Stability code 19, measure frequency parameter at +23°C ± 1°C.

- Normally frequency aging is up 30 days. However, aging may be ceased if value at 15 days is half than the limit of 30-day aging value, or continued up to 90 days if value exceeds 30 day aging limit for screening options "S".
- 3. Aging is $\pm 5/\pm 10$ ppm after first year and ± 2 ppm/year thereafter.
- 4. AC logic (+5Vdc) is HCMOS & TTL compatible.
- 5. For CMOS, Duty Cycle is measured at 50% of Output and Rise and Fall Time is measured between 10% and 90% of the waveform.
- 6. For TTL, Duty Cycle is measured at 1.4Vdc and Rise and Fall Time is measured between 0.8V and 2.0V.

HIGH RELIABILITY HYBRID CRYSTAL CLOCK OSCILLATORS

1.8 to 5.0Vdc - 15kHz to 250MHz

Electrical Performance Characteristics 40MHz to 200MHz CMOS

(For BiCMOS +1.8Vdc, +2.5Vdc, +3.3Vdc CMOS Ouputs)

Maximum Ratings

Parameters	Symbol	Min.	Max.	Units
Supply Voltage	Vdd	-0.5	+5	V
Operating Temperature	Тор.	-55	+125	°C
Storage Temperature	Tstg	-62	+125	°C
Lead Solder Temperature			260/10	°C/seconds
Package Thermal Resistance	ЮJc		50	°C/W
Junction Temperature			+150	°C

Recommended Operating Conditions

Flactrical Paramatar	Test Conditions	Limits				Notos
		Min.	Nom.	Max.	Units	INOLES
	+1.8Vdc	40		100		All Packages
	+2 5Vdc	40		133		DIP, Flat Packs
Frequency Range	+2.5 Vue	70		133	MHz	All Other Packages
	13 3Vdc	70		200		DIP, Flat Packs
	+3.3 Vue	70		184.32		All Other Packages
Frequency/Temperature Stability	See temperature codes	-55	+25	+125	°C	(See Note 1)
	+1.8Vdc	1.62	1.8	1.98		
Supply Voltage	+2.5Vdc	2.25	2.5	2.75	Vdc	
	+3.3Vdc	2.97	3.3	3.63		
	Measured without load			30		$40M \le F < 100MHz$
Input Current (Option L - 3.3Vdc)	at maximum Vdd			40	mA	$100M \le F < 130MHz$
				50		$130M \le F \le 200MHz$
Input Current (Option N $_{-2}$ 5Vdc)	Measured without load			25	mΔ	$40M \le F < 00MHZ$ $60M \le F < 85MHZ$
input current (option it 2.5 vac)	at maximum Vdd			35	1112 ¥	$85M \le F \le 133MHz$
	Measured without load at maximum Vdd			10	mA	$40M \le F < 50MHz$
Input Current (Option R - 1.8Vdc)				20		$50M \leq F < 85MHz$
				25		$85M \le F \le 100MHz$
Output Voltage VOL				Vdd x 0.1	Vdc	
Output Voltage VOH		Vdd x 0.9			Vdc	
Output Waveform			Square Wave		N/A	
Rise and Fall Time	10% to 90%			3	ns	
Duty Cycle	50% of output	40		60	%	
Load			$15 pF//10 k\Omega$			
Frequency Aging - 30 days				±1.5	ppm	40M - 150MHz
requency riging to anyo	70°C±3°C			±2	ppm	>150M - 200MHz
(See Note 2)				±3 +4	ppm	40 - 85MHz (5x7 packages only) E > 85MHz (5x7 packages only)
	70°C+3°C			+5	ppm	(See Note 3)
Frequency Aging, First Year	70°C±3°C			±10	ppm	5x7 packages only (See Note 3)
Start-up Time	100µs ramp			10	ms	
Output Enable VIH		0.7 x Vdd			Vdc	
Output Disable VIL				0.3 x Vdd	Vdc	Output High Impedance
		-3		+3		DIP, FP: 40MHz \leq F \leq 165MHz
Frequency Voltage Tolerance	Over ±10% change in supply voltage	-4		+4	ppm	All Ceramic Packages: 40MHz ≤ F ≤ 165MHz
		-5		+5		All Packages F > 165MHz

NOTES:

Frequency stability compared to nominal frequency including initial accuracy at 25°C, load, and supply variations $\pm 10\%$. Frequency Stability code 19, measure frequency parameter at $\pm 23^{\circ}C \pm 1^{\circ}C$. 1.

Normally frequency aging is up 30 days. However, aging may be ceased if value at 15 days is half than the limit of 30-day aging value, or continued up to 90 days if value exceeds 30 day 2. aging limit for screening option "S".

Aging is $\pm 5/\pm 10$ ppm after first year and ± 2 ppm/year thereafter. 3.

Please see Paragraph 3.5.4.1 (page 3) for Scanning Electron Microscopy (SEM) on potential metallization thinning on the active die used in these designs - VC5035AL, Class K. 4.

Electrical Performance Characteristics 450kHz to 40MHz CMOS

(For CMOS +1.8Vdc and +2.5Vdc CMOS Ouputs)

Maximum Ratings

Parameters	Symbol	Min.	Max.	Units
Supply Voltage	Vdd	-0.5	+5	V
Operating Temperature	Тор.	-55	+125	°C
Storage Temperature	Tstg	-62	+125	°C
Lead Solder Temperature			260/10	°C/seconds
Package Thermal Resistance	ΘJc		50	°C/W
Junction Temperature			+150	°C

Recommended Operating Conditions

Floatrical Paramotor	Test Conditions		Lin	Notos		
	I est Conutions	Min.	Nom.	Max.	Units	Indies
Fraguency Pange	+1.8Vdc	0.450		40	MHz	All Packages
Trequency Kange	+2.5Vdc	0.450		40	MHz	All Packages
Frequency/Temperature Stability	See temperature codes	-55	+25	+125	°C	(See Note 1)
Supply Voltage	+1.8Vdc	1.62	1.8	1.98	Vdc	
Supply Voltage	+2.5Vdc	2.25	2.5	2.75	Vdc	
Input Current (Option R - 1.8Vdc)	Measured without load at maximum Vdd			4	mA	450kHz - 40MHz
Input Current (Option N - 2.5Vdc)				3 6	mA	450kHz - <500kHz 500kHz - 40MHz
Output Voltage VOL				Vdd x 0.1	Vdc	
Output Voltage VOH		Vdd x 0.9			Vdc	
Output Waveform		S	Square Wave	e	N/A	
Rise and Fall Time	10% to 90%			6 4	ns	450kHz - <20MHz 20MHz - 40MHz
Duty Cycle	50% of output	45 40		55 60	%	450kHz - <15MHz 15MHz - 40MHz
Load			15pF//10kΩ			
Frequency Aging after 30 days	70°C±3°C			±1.5	ppm	(See Note 2)
Frequency Aging, First Year	70°C±3°C			±5	ppm	(See Note 3)
Start-up Time	100µs ramp			10	ms	
Output Enable VIH		0.7 x Vdd			Vdc	
Output Disable VIL				0.3 x Vdd	Vdc	Output High Impedance
Frequency Voltage Tolerance	Over ±10% change in supply voltage	-4		+4	ppm	All Packages

NOTES:

- 1. Frequency stability compared to nominal frequency including initial accuracy at 25°C, load, and supply variations $\pm 10\%$. Frequency Stability code 19, measure frequency parameter at +23°C ± 1 °C.
- 2. Normally frequency aging is up 30 days. However, aging may be ceased if value at 15 days is half than the limit of 30-day aging value, or continued up to 90 days if value exceeds 30 day aging limit for screening option "S".
- 3. Aging is \pm 5ppm after first year and \pm 2ppm/year thereafter.

Electrical Performance Characteristics 40MHz to 250MHz LVDS

(For BiCMOS +2.5Vdc and +3.3Vdc LVDS Ouputs)

Maximum Ratings

Parameters	Symbol	Min.	Max.	Units
Supply Voltage	Vdd	-0.5	+5	V
Operating Temperature	Тор.	-55	+125	°C
Storage Temperature	Tstg	-62	+125	°C
Lead Solder Temperature			260/10	°C/seconds
Package Thermal Resistance	ΘJc		50	°C/W
Junction Temperature			+150	°C

Recommended Operating Conditions

Electrical Davamator	Test Conditions	Limits				Notos	
Electrical Parameter	Test Conditions	Min.	Nom.	Max.	Units	notes	
	0.5141	80		250		Flat Packs, QT93, QT94	
	+2.5Vdc	80		162.5		5x7mm Packages	
Frequency Range		40		250	MHz	Flat Packs, QT93, QT94	
	+3.3Vdc	40		162.5		5x7mm Packages	
Frequency/Temperature Stability	See temperature codes	-55	+25	+125	°C	(See Note 1)	
Supply Voltage		3.135 2.375	3.3 2.5	3.465 2.625	Vdc Vdc		
Input Current	Measured without load at maximum Vdd			66 80	mA mA	F > 250MHz	
Output Voltage VOL		0.90	1.1		Vdc		
Output Voltage VOH			1.45	1.65	Vdc		
Differential Output Voltage (VOD)		247	330	454	mV		
Offset Voltage (VOS)		1.125	1.25	1.375	V		
Output Waveform			Square Wave	•	N/A		
Rise and Fall Time	20% to 80%			1000 600	ps	$\begin{array}{c} 40 MHz \leq F < 80 MHz \\ F \geq 80 MHz \end{array}$	
Duty Cycle	50% of output	45	50	55	%		
Load		(Connec	100Ω ted between (Q+ & Q-)	Ω		
Frequency Aging after 30 days (See Note 2)	70°C±3°C			± 1.5 ± 2 ± 3 ± 3.5 ± 3 ± 4	ppm ppm ppm ppm ppm ppm	$\begin{array}{c} 40MHz < F < 150MHz\\ 150MHz < F < 200MHz\\ 200MHz < F < 250MHz\\ F > 250MHz\\ 40 - 80MHz (5x7 \mbox{ packages only})\\ F > 80MHz (5x7 \mbox{ packages only}) \end{array}$	
Frequency Aging, First Year	70°C±3°C			±5 ±10	ppm	F < 150MHz $F \ge 150MHz$ (See Note 3)	
Frequency Aging, First Year (5x7 packages)	70°C±3°C			±10 ±15	ppm	$F \le 80MHz$ F > 80MHz (See Note 3)	
Start-up Time	100µs ramp			10	ms		
Output Enable VIH		0.7xVcc			Vdc		
Output Disable VIL				0.3xVcc	Vdc	Output High Impedance	
Frequency Voltage Tolerance	Over Vcc \pm 5%	-4		+4	ppm	All Packages	

NOTES:

Frequency stability compared to nominal frequency including initial accuracy at 25°C, load, and supply variations ±5%. Frequency Stability code 19, measure frequency parameter at +23°C ± 1°C.

2. Normally frequency aging is up 30 days. However, aging may be ceased if value at 15 days is half than the limit of 30-day aging value, or continued up to 90 days if value exceeds 30 day aging limit.

3. Aging is $\pm 5/\pm 10/\pm 15$ ppm after first year and ± 2 ppm/year thereafter.

Please see Paragraph 3.5.4.1 (page 3) for Scanning Electron Microscopy (SEM) on potential metallization thinning on the active die used in these designs - VC5037, Class K. 4.

HIGH RELIABILITY HYBRID CRYSTAL CLOCK OSCILLATORS 18 to 5.0Vdc - 15kHz to 250MHz

Electrical Performance Characteristics 80MHz to 250MHz LVPECL

(For BiCMOS +2.5Vdc and +3.3Vdc LVPECL Ouputs)

Maximum Ratings

Parameters	Symbol	Min.	Max.	Units
Supply Voltage	Vdd	-0.5	+5	V
Operating Temperature	Тор.	-55	+125	°C
Storage Temperature	Tstg	-62	+125	°C
Lead Solder Temperature			260/10	°C/seconds
Package Thermal Resistance	ΘJc		50	°C/W
Junction Temperature			+150	°C

Recommended Operating Conditions

Electrical Danamatan	Test Conditions		Lin	nits	Notos	
Electrical Farameter	Test Conditions	Min.	Nom.	Max.	Units	notes
	10 5V J-	80		200		Flat Packs, QT193, QT194
Emanuer av Den ac	+2.5 V dc	80		162.5	MIL	5x7mm Packages
Frequency Kange	2 2Vda	80		250		Flat Packs, QT193, QT194
	+3.3 V de	80		162.5		5x7mm Packages
Frequency/Temperature Stability	See temperature codes	-55	+25	+125	°C	(See Note 1)
Supply Voltage		3.135	3.3	3.465	Vdc	
	Management with out load	2.375	2.5	2.625	Vdc	
Input Current	at maximum Vdd		60	88	mA	
	3.3V	1.470	1.600	1.745	Vdc	
Output Voltage VOL	2.5V	1.415	1.495	1.620	Vdc	
Output Voltaga VOH	3.3V	2.215	2.295	2.420	Vdc	
Output Voltage VOH	2.5V	0.670	0.800	1.195	Vdc	
Output Waveform			Square Wave		N/A	
Rise and Fall Time	20% to 80%		300	700	ps	
Duty Cycle	50% of output	45	50	55	%	
Load		4	50Ω to Vcc-2V	V	Ω	or Thevenin equivalent
	3 3V	0.4			V	peak to peak of
Output Swing Vopp	5.5 1	0.4			v	single output waveform
Sulput Swing Yopp	2.5V	0.2			V	peak to peak of
					•	single output waveform
				±1.5	ppm	80M < F < 150MHz
Frequency Aging after 30 days	7000 200			±2	ppm	150M < F < 200MHz
$(\mathbf{C}_{1}, \mathbf{N}_{1}, \mathbf{C}_{2})$	/0°C±3°C			±3	ppm	$200M \le F \le 250MHz$
(See Note 2)				±3	ppm	$40M \le F \le 80MHz$ (5x7 packages only) E > 80MHz (5x7 packages only)
				4 	ppm	E < 150MHz
Frequency Aging First Vear	70°C+3°C			±5	nnm	F < 150MHz E > 150MHz
requency Aging, this real	70 C±5 C			±10	ppm	(See Note 3)
				+10		F < 80 MHz
Frequency Aging, First Year	70°C±3°C			±15	ppm	F > 80MHz
(5x7 packages)					r r	(See Note 3)
Start-up Time	100µs ramp			10	ms	
Output Enable VIH		0.7xVcc			Vdc	
Output Disable VIL				0.3xVcc	Vdc	Output High Impedance
Frequency Voltage Tolerance	Over Vcc ± 5%	-4		+4	ppm	All Packages

NOTES

1. Frequency stability compared to nominal frequency including initial accuracy at 25°C, load, and supply variations ±5%. Frequency Stability code 19, measure frequency parameter at +23°C ± 1°C.

2. Normally frequency aging is up 30 days. However, aging may be ceased if value at 15 days is half than the limit of 30-day aging value, or continued up to 90 days if value exeeds 30 day aging limit for screening options "S" only.

3. Aging is $\pm 5/\pm 10/\pm 15$ ppm after first year and ± 2 ppm/year thereafter.

4. Please see Paragraph 3.5.4.1 (page 3) for Scanning Electron Microscopy (SEM) on potential metallization thinning on the active die used in these designs - VC5036, Class K.

HIGH RELIABILITY HYBRID CRYSTAL CLOCK OSCILLATORS

1.8 to 5.0Vdc - 15kHz to 250MHz

Reflow Profile

The five transition periods for the typical reflow process are:

- Preheat
- Flux activation
- Thermal equalization
- Reflow
- Cool down

Embossed Tape and Reel Information

Dimensions are in mm. Tape is compliant to EIA-481-A.

QT	А	В	С
QT178	10.01 ±0.1	14.53 ±0.1	4.80 ±0.1
QT182	5.72 ±0.1	7.70 ±0.1	4.10 ±0.1
QT183	7.65 ±0.1	9.50 ±0.1	4.70 ±0.1
QT184	5.35 ±0.1	7.75 ±0.1	1.85 ±0.1
QT190	9.470 ±0.1	11.92 ±0.1	6.16 ±0.1
QT188, 192, 193	8.71 ±0.1	9.55 ±0.1	5.34 ±0.1

Reel size vs. quantity:

Reel size	Qty per reel (pcs)				
(Diameter in mm)	QT178	QT184	QT183,188,190,192,193		
178	250	1000	150		
330	1000		800		

Environmental Specifications

Q-Tech Standard Screening/QCI (MIL-PRF-38534 or MIL-PRF-55310) is available for all of our B+ Products. Q-Tech can also customize screening and test procedures to meet your specific requirements. The B+ product is designed and processed to exceed the following test conditions:

Environmental Test	Test Conditions
Temperature Cycling	MIL-STD-883, Method 1010, Cond. B or Cond. C
Constant Acceleration	MIL-STD-883, Method 2001, Cond. A, Y1
Seal: Fine and Gross Leak	MIL-STD-883, Method 1014, Cond. A, B1 and B2, B3, C
Burn-in	160 hours, 240 hours, or 2 at 160 hours, 125°C with load
Aging	30 days, 70°C, ±1.5ppm max
Vibration, Sinusoidal	MIL-STD-202, Method 204
Random Vibration	MIL-STD-883, Method 2026
Shock, Non-operating	MIL-STD-202, Method 213, Cond. I (See Note 1)
Thermal Shock, Non-operating	MIL-STD-202, Method 107, Cond. B
Ambient Pressure, Non-operating	MIL-STD-202, 105, Cond. C, 5 minutes dwell time minimum
Resistance to Soldering Heat	MIL-STD-202, Method 210
Moisture Resistance	MIL-STD-202, Method 106
Terminal Strength / Lead Integrity	MIL-STD-202, Method 211 / MIL-STD-883, Method 2004 or 2028
Resistance to Solvents	MIL-STD-202, Method 215
Solderability	MIL-STD-202, Method 208
ESD Classification	MIL-STD-883, Method 3015, Class 1C HBM (1000 to 1999 Volts)
Moisture Sensitivity Level	J-STD-020, MSL=1

Note 1: Additional shock results successfully passed on 16MHz, 40MHz, and 80MHz

- Shock 850g peak, half-sine, 1 ms duration (MIL-STD-202, Method 213, Cond. D modified)
- Shock 1,500g peak, half-sine, 0.5ms duration (MIL-STD-883, Method 2002, Cond. B)
- Shock 36,000g peak, half-sine, 0.12 ms duration (QT188, QT190 & QT192, QT193, QT194)

Please contact Q-Tech for higher shock requirements

HIGH RELIABILITY HYBRID CRYSTAL CLOCK OSCILLATORS

TYPICAL TEST CIRCUIT FOR CMOS LOGIC

1.8 to 5.0Vdc - 15kHz to 250MHz

Differential Output of a QT393NW10M-312.500MHz

Frequency vs. Temperature Curve

Thermal Characteristics

The heat transfer model in a hybrid package is described in figure 1.

Heat spreading occurs when heat flows into a material layer of increased cross-sectional area. It is adequate to assume that spreading occurs at a 45° angle.

The total thermal resistance is calculated by summing the thermal resistances of each material in the thermal path between the device and hybrid case.

$$RT = R1 + R2 + R3 + R4 + R5$$

The total thermal resistance RT (see figure 2) between the heat source (die) to the hybrid case is the Theta Junction to Case (Theta JC) in $^{\circ}$ C/W.

- Theta junction to case (Theta JC) for this product is 30°C/W.
- Theta case to ambient (Theta CA) for this part is 100°C/W.
- Theta Junction to ambient (Theta JA) is 130°C/W.

Maximum power dissipation PD for this package at 25°C is:

- PD(max) = (TJ (max) TA)/Theta JA
- With $TJ = 175^{\circ}C$ (Maximum junction temperature of die)
- PD(max) = (175 25)/130 = 1.15W

Test Circuit

The Tristate function on pin 1 has a built-in pull-up resistor typical $50k\Omega$, so it can be left floating or tied to Vdd without deteriorating the electrical performance.

15-Day Aging of a QT122L10S-200MHz

(Figure 2)

HIGH RELIABILITY HYBRID CRYSTAL CLOCK OSCILLATORS

1.8 to 5.0Vdc - 15kHz to 250MHz

Jitter And Phase Noise

As data rate increases, effect of jitter becomes critical with its budget tighter. Jitter is the deviation of a timing event of a signal from its ideal position. Jitter is complex and is composed of both random jitter (RJ) and deterministic jitter (DJ) components.

Random Jitter (RJ) is theoretically unbounded and Gaussian in distribution, while Deterministic Jitter (DJ) is bounded and does not follow any predictable distribution.

Q-Tech utilizes the EZJIT Plus jitter analysis software with Noise reduction software that supports Agilent Infinium real-time oscilloscope. Measure at its maximum sampling rate 40Gs/s and memory depth, we can separate the signal's aggregate total jitter into Random Jitter (RJ) and Deterministic Jitter (DJ).

Since Random Jitter is unbounded and Gaussian in style, the Total Jitter is a function of Bit Error Rate (BER).

TJ = RJ + DJ

Where:

 $TJ = RJ(rms) \times 2\alpha + DJ(p-p)$

BER	α
10E-3	3.1
10E-6	4.75
10E-9	6
10E-12	7.0

Typical Jitter at BER=10E-12

Frequency	DJ	RJ	TJ
	(p-p) ps	(rms) ps	(ps)
22.118MHz	31	3.36	78.9
100MHz	1.61	1.99	21.1
125MHz	1.34	1.23	18.9
200MHz	1.53	2.04	30.7

Typical Phase Noise

Figure 1: Jitter Analysis of a QT128L10S-200MHz

Figure 2: Jitter Analysis of a QT192LD9S-125MHz

Frequency	10Hz	100Hz	1kHz	10kHz	100kHz	1MHz	Phase Jitter (ps) *
22.118MHz	-90	-125	-150	-157	-162	-162	0.151
100MHz	-76	-101	-128	-140	-143	-149	0.120
125MHz	-74	-101	-131	-143	-145	-150	0.118
200MHz	-73	-99	-124	-134	-145	-148	0.121

(*) Integrated from 1kHz to 20MHz

Phase Noise and Phase Jitter Integration

Phase noise is measured in the frequency domain, and is expressed as a ratio of signal power to noise power measured in a 1Hz bandwidth at an offset frequency from the carrier, e.g. 10Hz, 100Hz, 1kHz, 10kHz, 100kHz, etc. Phase noise measurement is made with an Agilent E5052A Signal Source Analyzer (SSA) with built-in outstanding low-noise DC power supply source. The DC source is floated from the ground and isolated from external noise to ensure accuracy and repeatability.

In order to determine the total noise power over a certain frequency range (bandwidth), the time domain must be analyzed in the frequency domain, and then reconstructed in the time domain into an rms value with the unwanted frequencies excluded. This may be done by converting L(f) back to $S\varphi(f)$ over the bandwidth of interest, integrating and performing some calculations.

Symbol	Definition
$\int \mathcal{L}(\mathbf{f})$	Integrated single side band phase noise (dBc)
$S\phi(f)=(180/\Pi)x\sqrt{2 \int \mathcal{L}(f)df}$	Spectral density of phase modulation, also known as RMS phase error (in degrees)
RMS jitter = $S\phi$ (f)/(fosc.360°)	Jitter(in seconds) due to phase noise. Note $S\phi$ (f) in degrees.

The value of RMS jitter over the bandwidth of interest, e.g. 10kHz to 20MHz, 10Hz to 20MHz, represents 1 standard deviation of phase jitter contributed by the noise in that defined bandwidth.

Figure below shows a typical Phase Noise/Phase jitter of a QT193NW10M, 2.5Vdc, 312MHz and QT178AC9A, 5.0Vdc, 80MHz clock at offset frequencies 10Hz to 1MHz, and phase jitter integrated over the bandwidth of 12kHz to 1MHz.

QT193NW10M, 2.5Vdc, 312MHz

QT178AC9A, 5.0Vdc, 80MHz

CLASS B+ PRODUCTS HIGH RELIABILITY HYBRID CRYSTAL CLOCK OSCILLATORS 1.8 to 5.0Vdc - 15kHz to 250MHz

Package Outline - Dimensions are in inches (mm)

QT106 Q-TECH P/N FREQ. D/C S/N Δ .200 (5.08)MAX. .200 (5.08)^{MIN} .<u>018</u> (.<u>457</u>) <u>.600</u> (15.24) (<u>22.35</u>) MAX. .300 (12.83) (7.62) $\stackrel{14}{\odot} \odot \odot \odot \odot \odot \odot \overset{\scriptscriptstyle 8}{\odot}$ ł 100 (2.54)

QT141

QT142

CLASS B+ PRODUCTS HIGH RELIABILITY HYBRID CRYSTAL CLOCK OSCILLATORS 18 to 5.0Vdc - 15kHz to 250MHz

Package Outline - Dimensions are in inches (mm) (Continued)

CLASS B+ PRODUCTS HIGH RELIABILITY HYBRID CRYSTAL CLOCK OSCILLATORS 18 to 5.0Vdc - 15kHz to 250MHz

Package Outline - Dimensions are in inches (mm) (Continued)

QT180

0.205 ± .010

(5.20 ± 0.250

0.200 ± .005

QT183

QT184

.055 ± .005 (1.40 ± .13)

.047±.008 (1.20±.20) .103

QT185

 $\frac{0.008 \pm .001}{(.20 \pm 0.03)}$

QT186

CLASS B+ PRODUCTS HIGH RELIABILITY HYBRID CRYSTAL CLOCK OSCILLATORS

1.8 to 5.0Vdc - 15kHz to 250MHz

Package Outline - Dimensions are in inches (mm) (Continued)

QT187

QT192

QT193

QT194

HIGH RELIABILITY HYBRID CRYSTAL CLOCK OSCILLATORS

1.8 to 5.0Vdc - 15kHz to 250MHz

C)T#	Vcc	GND	Case	Output	E/D or N/C	Equivalent MIL-PRF-55310 Configuration	LVDS and LVPECL Outputs
	QT101	8	4	4	5	2	/9 = QT1T	
finit	QT106	14	7	7	8	1	/16 = QT6T /26A = QT6HC	
	QT141	14	7	7	8	1	/26B = QT41HC	
	QT142	14	7	7	8	1	N/A	
	OT122	8	9	9	10 (CMOS, TTL)	7	N/A	Pin 10 OutN (-)
	Q1122		-		10 & 11 (LVDS, LVPECL)	7	11/11	Pin 11 Out (+)
	QT128	8	9	9	10 (CMOS, TTL)	7	N/A	Pin 10 OutN (-) Pin 11 Out (+)
					11 (CMOS, TTL)	12		
OTECH PN FRED. DC SIN	QT125	13	10	10	11 & 12 (LVDS_LVPECL)	8	/21 = QT25T	Pin 11 OutN (-) Pin 12 Out (+)
					$\frac{11}{11} (CMOS TTL)$	10		
A O-TECH PN FRED, DEC SN	QT127	13	10	10		0	N/A	Pin 11 OutN (-)
					11 & 12 (LVDS, LVPECL)	8		Fill 12 Out (+)
PN FISD DC SN	QT126	14	7	7	8	6	N/A	
	QT130/	12	6	6	7 (CMOS, TTL)	8	N/A	Pin 7 OutN (-)
DC SN	QT131	12	0	0	7 & 8 (LVDS, LVPECL)	5	IN/A	Pin 8 Out (+)
Office PN PN DC SN	QT129	14	7	7	8	6	N/A	
	QT178	4	2	2	3	1	/27 = QT78HCD /28 = QT78TD /30 = QT78LD	
	QT180	6	3	3	4 (CMOS) 4 & 5	1	N/A	Pin 4 OutN (-) Pin 5 Out (+)
PIN FRED. A DC SN	QT181	4	2	2	3	1	N/A	
	QT182	4	2	2	3	1	N/A	
	QT183	4	2	2	3	1	N/A	
	QT184	4	2	2	3	1	N/A	
Prn Preduktery ∆ Drc. Sin	QT185	6	3	3	4 (CMOS)	1	N/A	Pin 4 OutN (-)
	QT186	6	3	3	4 & 5 4 (CMOS) 4 & 5	1	N/A	Pin 5 Out (+) Pin 4 OutN (-) Pin 5 Out (+)
PN FREE	OT187	6	3	3	4 (CMOS)	1	N/A	Pin 4 OutN (-)
					4 & 5		/33 = QT88HCD	Pin 5 Out (+)
	QT188	4	2	2	3	1	/34 = QT88LD /35 = OT88ND	
	QT189	4	2	2	3	1	N/A	
	QT190	4	2	2	3	1	N/A	
	QT192	4	2	2	3	1	/37 = QT92HCD /38 = QT92LD /39 = QT92ND	
	QT193	6	3	3	4 (CMOS, TTL) 4 & 5 (LVDS) 4 & 5 (LVPECL)	1	N/A	Pin 4 OutN (-) Pin 5 Out (+)
	QT194	6	3	3	4 (CMOS, TTL) 4 & 5 (LVDS) 4 & 5 (LVPECL)	1	N/A	Pin 4 OutN (-) Pin 5 Out (+)

HIGH RELIABILITY HYBRID CRYSTAL CLOCK OSCILLATORS 18 to 5.0Vdc - 15kHz to 250MHz

Package Information

QT101

- Package material (header and leads): Kovar
- Lead finish: Gold Plated $50\mu \sim 80\mu$ inches
- Nickel Underplate $100\mu \sim 250\mu$ inches • Cover: Pure Nickel Grade A
- Package to lid attachment: Resistance weld
- Weight: 2.0g typ., 4.96g max.

QT122, QT125, QT126, QT127, QT128, QT129, QT130, QT131:

- Package material (Header and Leads): Kovar
- Lead finish: Gold Plated $-50\mu \sim 80\mu$ inches
 - Nickel Underplate $100\mu \sim 250\mu$ inches
- Cover: Kovar, Gold Plated 50μ ~ 100μ inches Nickel Underplate – 70μ ~ 90μ inches
- Package to lid attachment: Seam weld
- Weight: 2.0g typ., 4.0g max.

QT106, QT141, QT142

- Package material (header and leads): Kovar
- Lead finish: Gold Plated 50μ ~ 80μ inches Nickel Underplate – 100μ ~ 250μ inches
- Package to lid attachment: Resistance weld
- Cover: (DIP-14): Pure Nickel Grade A
- Weight: (DIP-14): 3.4g typ.,14.2g max.

QT178, QT180, QT181, QT182, QT183, QT184, QT185, QT186, QT187 QT188, QT189, QT190, QT192, QT193, QT194

- Package material: 90% AL2O3
- Lead material: Kovar
- Lead finish: Gold Plated: 50μ ~ 80μ inches Nickel Underplate: 100μ ~ 250μ inches
- Weight: QT178: 1.1g typ., 3.0g max. QT180, QT181, QT182, QT183, QT184, QT185, QT186, QT187 QT188, QT189, QT190, QT192, QT193, QT194: .6g typ., 3.0g max.

Packaging Options

QT101, QT106, QT141, QT142

• Standard packaging in black foam

QT122, QT125, QT126, QT127, QT128, QT129, QT130, QT131

• Standard packaging in a locked anti-static cardboard

QT178, QT180, QT181, QT182, QT183, QT184, QT185, QT186, QT187 QT188, QT189, QT190, QT192, QT193, QT194

- Standard packaging in anti-static plastic tube (60pcs/tube)
- Tape and Reel is available for an additional charge.

Specifications subject to change without prior notice.

QCI Per MIL-PRF-38534, CLASS K (Modified)

Table VII Group B Inspection (Note 1)

Subaroup	Tast Description		MIL-STD-883	$O_{\text{upptitu}} / (A_{\text{poppt}} N_{\text{pop}})$
Subgroup		Method	Condition	Quantity / (Accept No.)
1	Physical Dimensions	2016	-	2 (0)
2	Particle Impact Noise Detection (Note 2)	2020	В	15 (0)
3	Resistance to Solvents	2015	-	3 (0)
4	Internal Visual and Mechanical	2014	-	1 (0)
5	Bond Strength (Note 3)	2011	C or D	2 (0)
6	Die Shear Strength (Note 4)	2019	-	2 (0)
7	Solderability (Note 5)	2003	Solder Temperature: 245 ±5° C	1 (0)
8	Seal; Fine Leak and Gross Leak (Note 6)	1014	A1 or B1 & C, B2, or B3	4 (0)
9	ESD Classification (Note 7)	3015	-	4 (0)

NOTES:

- 1. Non catastrophic screening test rejects may be used for Group B.
- 2. To be omitted. Performed during screening, see Table I.
- 3. Subgroup 5 shall be performed in accordance with the Group B bond strength requirements of MIL-PRF-38534. This test may be performed in-process anytime prior to cover seal.
- 4. Die shear test samples shall not be the same units as subjected to bond pull. Die shear specimens shall not be exposed to the 300°C preconditioning used for the bond strength test.
- 5. Solder temperature shall be $245 \pm 5^{\circ}$ C.
- 6. Subgroup 8, the fine and gross leak tests are being done during screening, see Table I.
- 7. Subgroup 9, the ESD classification test, is not required. The hybrid has been classified as ESDS Class 1C (i.e., Electrostatic voltage = 1999V) and shall be marked accordingly.

Table VIII Group C Inspection

Subaroup	Test Description		MIL-STD-883	Output the / (Accornt No.)	
Subgroup		Method	Condition	Quantity / (Accept No.)	
	External Visual	2009			
	Temperature Cycling	1010	C, 20 Cycles		
	Constant Acceleration	2001	A, Y ₁ Axis	5 (0)	
1	Seal (fine & gross leak)	1014	A1 or B1 & C, B2, or B3		
	Radiographic Inspection	2012		(Note 1, 3)	
	Visual Examination				
	End Point Electricals (Note 2)				
	End Point Electricals (Note 2)			5 (0)	
2	Steady State Life	1005	1000 hours at 125°C		
	End Point Electricals (Note 2)			(Note 3)	
3	Internal Gas Analysis	1018		3 (0) or 5 (1)	

NOTES:

- 1. Five units shall be used for Group C inspection based on limited usage acquisition requirements of MIL-PRF-38534.
- 2. End point electrical shall be as specified for the applicable device specification.
- 3. Subgroup 1 specimens shall be used for subgroup 3 testing, but not recommended for subgroup 2 testing.

QCI Per MIL-PRF-38534, CLASS K (Modified) (continued)

Table IX Group D Inspection

Subgroup	Test Description	MIL-STD-883		Quantity / (Accort No.)	
		Method	Condition		
1	Thermal Shock	1011	С	5 (0)	
	Stabilization Bake	1008	1 hour at 150°C	5 (0)	
	Lead Integrity	Per MIL-PRF-55310, test method is dependent on package type		1 (0)	
	Seal (fine and gross leak)	1014	A1 or B1 & C, B2, or B3	5 (0)	

NOTES

1. Group D inspection is not required when package evaluation has been performed at incoming inspection.

QCI Per MIL-PRF-55310

Table X Group C Inspection

Subgroup	Test Description	Test Method	Quantity (Accept No.)
1	Vibration (Sinusoidal, Non-Operating) Shock (Specified Pulse, Non-Operating) Random Vibration (Non-Operating)	MIL-STD-202, Method 204 (Note 3) MIL-STD-202, Method 213, Condition I MIL-STD-883, Method 2026, Condition I-J	8 (0)
2	Thermal Shock Ambient Pressure (non-operating) Ambient Pressure (operating) Storage Temperature	MIL-STD-202, Method 107, Condition Boperating)MIL-PRF-55310, Paragraph 4.8.46.1ating)MIL-STD-202, Method 105, Condition CMIL-PRF-55310, Paragraph 4.8.47	
3	Resistance to Solder Heat Moisture Resistance Salt Atmosphere	MIL-STD-202, Method 210 (Note 3) MIL-STD-202, Method 106 MIL-STD-883, Method 1009, Condition A	2 (0)
4	Terminal Strength (Leaded Packages) Terminal Strength (Leadless Packages) Resistance to Solvents	MIL-STD-202, Method 211 (Note 3) MIL-STD-883, Method 2004, Condition D MIL-STD-202, Method 215	2 (0)
5	End Point Electricals (Note 4) Life Test End Point Electricals (Note 4)	MIL-STD-883, Method 1005 (1000 Hours at 125°C)	2 (0) (Level S) (Note 5)

NOTES

1. Eight (8) sample units shall be selected from inspection lots which have passed quality conformance inspection. Group C may be completed with a minimum sample size of four (4) units as specified by the qualifying activity.

2. All test conditions are in accordance with MIL-PRF-55310.

3. Test Condition is dependent on package type.

4. Measure current, frequency, and output waveform at 23°C and temperature extremes. Frequency after life test shall be within ± 10 ppm of pre-life frequency.

5. When ordered with Screening Code 'B' only, Subgroup 2 shall be tested on 2 units and Subgroup 5 (Life Test) is not required.

HIGH RELIABILITY HYBRID CRYSTAL CLOCK OSCILLATORS 25 to 5.0Vdc - 15kHz to 350MHz

Revision History

ECO	REV	REVISION SUMMARY	PAGE	DATE
		Change titles of Table IV-b and V-b to "Group A Inspection 100%"	15 & 17	
		Change max frequency to 250MHz (was 350MHz)	All	
		Change name of Table IV-c to 'Qualification Test Requirements' (was 'Additional Electrical Measurements')	15	
		Revise/Add notes under table IV-c	15	
		Add QT130 and QT131 package information	5, 29, 32, 33	
		Revise notes under several screening/QCI tables to clear up wording and references	8 - 17	
		Update thickness and correct dimensions on all 5x7mm package outlines. Thickness was .079 (2.00), is now .100 (2.54) inches (mm)	30	
		Fix QT101 Markings to the actual format used	28	
		Table I, Frequency Aging 30 Days: Remove limits in Comments column. Specifications depend on detail specification.	8	
		Revise Temperature Code Note (***) for 5x7mm oscillators	1	
9625	U	Revised QT127 outline	29	06/26/2019
		Add Notes for Differential Output Voltage tests (LVDS) to Test Matrices	9 - 18	
		Add note for Aging after Life Test under Table I-b	9	
		Revise BiCMOS Electrical Characteristics table to add 1.8Vdc for frequencies of 40 - 100MHz)	20	
		Add new Electrical Characteristics table for 1.8V & 2.5V CMOS specifications for frequencies of 450kHz to 40MHz	21	
		Fix Enable/Disable Pinout for CMOS QT122/QT128	32	
		Update requirements for MIL-PRF-55310 Screening options (Options A and C) and Group C to match MIL-PRF-55310 Revision F	10 - 13, 35	
		Add /36 and /40 reference part number to 'equivalent' list	1	
		Update Environmental Specifications Table	24	
		Update MIL-PRF-38534, Class K Group B Table VII: Resistance to Solvents quantity changed to 3 (0), was 4 (0)	34	
11153	V	Add Random Vibration to screening options 'A' and 'C'	7, 10, 12	
		Add check mark to option B, Group A QCI in Screening Options Summary Table	7	
		Table V, Note 1: 100% Group A QCI per Table V-b is now always required/tested when ordered (removed 'when specified on the PO' verbiage).	16	
		Correct test method for Random Vibration in Table X - MIL-PRF-55310 Group C	35	08/06/2020
		Fix QT122 and QT128 pinouts	32	
		Add 5x7 Aging specifications on Electrical Characteristics tables	19, 20, 22, 23	
		Modify VIH and VIL spec to accomodate all voltages	20, 21	
		Change/add Frequency Voltage Tolerance for different package types/frequencies across all electrical characteristics tables	19 - 23	

HIGH RELIABILITY HYBRID CRYSTAL CLOCK OSCILLATORS 18 to 5.0Vdc - 15kHz to 250MHz

ECO	REV	REVISION SUMMARY	PAGE	DATE
14507	W	Update page numbers Update Q-Tech Address and Fax Number	All	04/27/2022
		Add Paragraph 3.5.4.1 Scanning Electron Microscopy Add SEM Note to BiCMOS Electrical Characteristics tables	3, 21, 23, 24	
		Add notes to clarify voltage, logic, and frequency options for all package types	5, 6, 7	
		Fix QT186 outline to correct pin number callouts	31	
		Add note to screening table for Fine/Gross Leak: Conditions A1 and C are used if B1 and B2 are not purchased by the customer.	11, 13	
		Add note to MIL-PRF-55310 Group A Tables: Testing performed as part of Final Electrical in screening is not required to be repeated as part of Group A.	10, 12, 14, 18	
		Modify 5x7mm package aging specification for frequencies up to 44MHz	20	
		Modify 5x7mm package rise and fall time frequency ranges	20	
		Clarify Duty Cycle and Rise and Fall Time test conditions for CMOS and TTL	20	
		Frequency/Voltage Tolerance modified for 5V and 3.3V in DIP and Flat Packages for frequencies between $15kHz \le F \le 27MHz$ and $36MHz \le F \le 85MHz$	20	
N/A	Х	Revision not used	N/A	N/A
16689	Y	Table X: Update Note 1, change MIL-PRF-55310 Group C standard quantity to 8 units	36	
		Updating aging specification for 5x7mm packages	20, 21, 23, 24	05/10/2023
		Updating Frequency/Voltage tolerance specification	20, 21	