| Revision Record |       |                                  |                         |            |                |            |                 |
|-----------------|-------|----------------------------------|-------------------------|------------|----------------|------------|-----------------|
| Revision        | DCO   | Description                      | Engineering<br>Approval | Date       | QA<br>Approval | Date       | Release<br>Date |
| -               | 3984  | Initial Release                  |                         |            |                |            | 04/22/2015      |
| А               | 11824 | Add temperature stability code 6 | R. Duong                | 06/12/2020 | S. Dasgupta    | 06/15/2020 | 06/24/2020      |
|                 |       |                                  |                         |            |                |            |                 |
|                 |       |                                  |                         |            |                |            |                 |
|                 |       | •                                |                         |            | _              |            |                 |



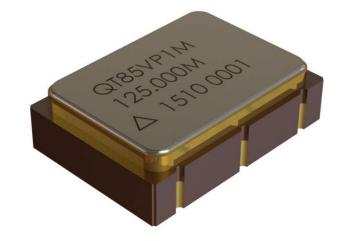
UNLESS OTHERWISE SPECIFIED **Dimensions are in Inches Tolerances** Fraction Angular

Decimal .xxx ± .005 .xx ± .02

 $.x \pm .1$ 

 $x/x \pm 1/16$ 

x° ± 2°


Proprietary Rights are involved in the subject matter of this material and all manufacturing, reproduction, use, and sales rights pertaining to such matter are expressly reserved. It is submitted in confidence for a specified purpose, and the recipient, by accepting this material, agrees that this material will not be used, copied, or reproduced in whole or in part, nor its contents revealed in any manner, or to any person, except for the purpose delivered.

| DETAIL PRODUCT SPECIFICATION CONTROL DRAWING |                    |                                              |           |                       |          |
|----------------------------------------------|--------------------|----------------------------------------------|-----------|-----------------------|----------|
| Initial Release                              | Q-Tech Corporation |                                              |           |                       |          |
| Prepared                                     | Prepared Date      |                                              | 10150 W   | est Jefferson Boul    | evard    |
| Richard Duong                                | 4/21/2015          | Culver City, CA 90232-3510 USA               |           |                       | USA      |
| Checked                                      | Date               |                                              |           | TITLE                 |          |
| Charles Peot                                 | 4/20/2015          | QT86 5x7MM VCXO SERIES                       |           |                       |          |
| Engineering Approval                         | Date               | LVPECL VOLTAGE CONTROLLED CRYSTAL OSCILLATOR |           |                       |          |
| Richard Duong                                | 4/21/2015          | 3.3Vdc   120MHz TO 125MHz                    |           | 2                     |          |
| Quality Assurance Approval                   | Date               | DRAWING NO. RE                               |           |                       | REVISION |
| Charles Peot 4/20/201                        |                    |                                              | QPDS-0011 | I                     | Α        |
| Released                                     | Date               | SCALE                                        | SIZE      | CAGE CODE             | PAGE     |
| Daniel Moline                                | 4/22/2015          | NONE A 51774 1 of 1                          |           | <b>1</b> of <b>11</b> |          |



#### **DESCRIPTION**

Q-Tech's 5x7mm LVPECL Voltage Controlled Crystal Oscillators consist of an IC operating at a supply voltage 3.3Vdc and a miniature strip quartz crystal that operates at the fundamental frequency. The series is offered in various ceramic package configurations from true Surface-Mount SMT to straight leads and formed leads. This is the smallest package offered with either a two-point crystal mount or a four-point for high shock and high reliability military applications.



#### **FEATURES**

- Made in the USA
- ECCN: EAR99
- Innovative Four Point Mount Strip Crystal Resonator option
- Frequency Range, 120MHz to 125MHz
- Small Footprint
- LVPECL output
- Operating Supply Voltage 3.3Vdc
- Wide Operating Temperature Range, -55°C to 105°C
- Option Enable/Disable (-D)
- Hermetically sealed package
- Fundamental Design allows low jitter performance
- Full or Partial Screening per MIL-PRF-55310, Level B
- High Shock Resistant Mechanical Shock, Half-Sine, 0.3ms, all Axes with 4-point mount (-F)
- Low phase noise
- Optional Hot Solder Dip, Sn60Pb40 or SAC305
- RoHS Compliant

#### **APPLICATIONS**

- ATM/SONET/SDH
- Missile Launch
- LAN/WAN Data
- Test and Measurement
- Broadband Access
- Ethernet, Gigabit Ethernet

#### ORDERING INFORMATION

Sample Part Number Construction

### QT85VFP1M - 125.000MHz

| Q   | No Meaning                               |
|-----|------------------------------------------|
|     | Solder Dip Options                       |
| Т   | T = Standard<br>S = Sn60Pb40             |
|     | S = \$1160PD40<br>G = \$AC305            |
|     | G - 3AC303                               |
|     | <u>Package</u>                           |
|     | 86 = Leaded                              |
| 85  | 87 = Formed Leads                        |
|     | 80 = Formed Leads                        |
|     | 85 = SMT                                 |
| V   | VCXO Model                               |
| •   |                                          |
|     | 4-Point Mount                            |
| F   | F = 4-Point Mount (High Shock)           |
|     | Blank = Standard 2-Point Mount           |
| Р   | <u>Logic</u>                             |
| Р   | P = +3.3Vdc LVPECL                       |
|     | Temperature Code                         |
|     | 1 = 0°C to +70°C                         |
| 4   | 5 = -20°C to +70°C                       |
| 1   | 7 = -40°C to +85°C                       |
|     | 8 = -40°C to +105°C                      |
|     | 6 = -55°C to $+105$ °C                   |
|     | Screening                                |
| M   | Blank = No Screening                     |
| ••• | M = Screening per MIL-PRF-55310, Level B |

125.000MHz Frequency in MHz

Q-Tech Corporation | 10150 West Jefferson Boulevard, Culver City, CA 90232 | T: 310.836.7900 | F: 310.836.2157 | www.Q-Tech.com

QPDS-0011RA (June 2020)

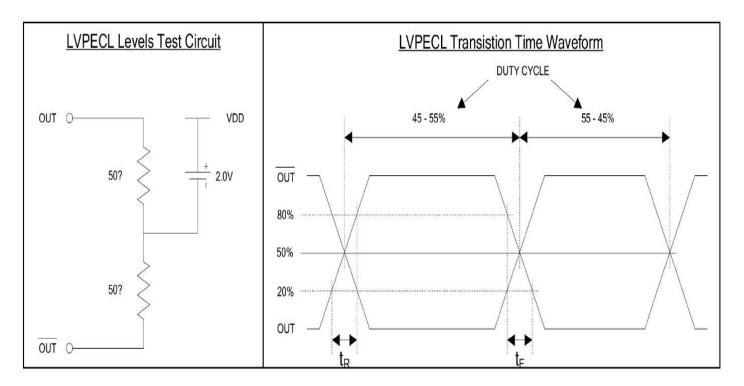
Page 2 of 11

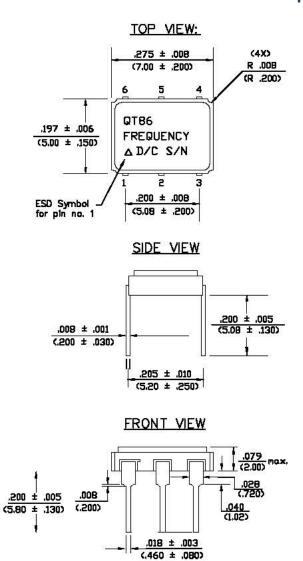


#### **ELECTRICAL CHARACTERISTICS**

| PARAMETERS                              | LIMITS                                                                                                           | COMMENTS                                                    |
|-----------------------------------------|------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|
| Output Frequency Range (Fo)             | 120MHz – 125MHz                                                                                                  |                                                             |
| Supply Voltage (Vdd)                    | +3.3Vdc ± 5%                                                                                                     |                                                             |
| Maximum Applied Voltage (Vdd max.)      | +5Vdc                                                                                                            |                                                             |
| Operating Temperature (Top)             | See Ordering Information                                                                                         |                                                             |
| Storage Temperature (Tsto)              | -62°C to +125°C                                                                                                  |                                                             |
| Supply Current (Idd)                    | 50mA max.                                                                                                        | No Load                                                     |
| Load                                    | 15pF                                                                                                             |                                                             |
| Duty Cycle (Sym)                        | 40/60% max. 45/55% typ.                                                                                          | Measured at ½ waveform                                      |
| Rise and Fall Times (Tr/Tf)             | 600ps max., 400ps typ.                                                                                           | Measured Between 20% and 80% or 80% and 20% output waveform |
| Start-Up Time (Tstup)                   | 10ms Max.                                                                                                        |                                                             |
| Output Voltage High (VOH)               | Vdd-1.025V min., Vdd-0.880V max.                                                                                 | RL=50Ω into Vdd-2Vdc                                        |
| Output Voltage Low (VOL)                | Vdd-1.810V min., Vdd-1.620V max.                                                                                 |                                                             |
| Enable/Disable (Option D)               | VIH ≥ 0.9Vcc Oscillation                                                                                         |                                                             |
|                                         | VIL ≤ 0.1Vcc Output Disabled                                                                                     |                                                             |
| Absolute Pull Range (APR)               | ±30ppm min.                                                                                                      |                                                             |
| Linearity (Lin)                         | ±10% max., ±5% typ.                                                                                              |                                                             |
| Gain Transfer (Kv)                      | $\pm 60$ ppm/V to $\pm 80$ ppm/V typ.                                                                            |                                                             |
| Control Voltage Range (Vc)              | 0V to 3.3Vdc                                                                                                     |                                                             |
| Modulation Bandwidth (BW)               | 10kHz min., 30kHz typ.                                                                                           | With Vc = 0V to 3.3V, -3dB                                  |
| Aging at +70°C ± 3°C                    | ±5ppm First Year Max.<br>±2ppm Max. Each Year Thereafter                                                         |                                                             |
| Integrated Phase Jitter                 | 1ps Max., 200fs typ.                                                                                             | 12kHz to 20MHz                                              |
| Period Jitter RMS                       | 5ps max. , 2.5ps typ.                                                                                            |                                                             |
| Phase Noise, relative to carrier (typ.) | 10Hz -70dBc/Hz<br>100Hz -98dBc/Hz<br>1kHz -125dBc/Hz<br>10kHz -145dBc/Hz<br>100kHz -150dBc/Hz<br>1MHz -150dBc/Hz | Measured at Vc = 0.3V to 3.0Vdc                             |







Figure 1 - Output Waveform and Test Set-Up

| 10150 West Jefferson Boulevard, Culver City, CA 90232 | T: 310.836.7900 | F: 310.836.2157 | www.Q-Tech.com

Page 4 of 11

QPDS-0011RA (June 2020)





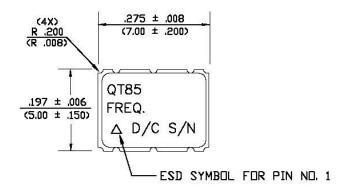
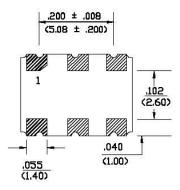

| QT86 (6 Leads)          |        |                                   |  |
|-------------------------|--------|-----------------------------------|--|
| Pin No. Symbol Function |        | Function                          |  |
| 1                       | Vc     | VCXO Control Voltage              |  |
| 2                       | E/D    | N/C or Enable/Disable (Option –D) |  |
| 3                       | GND    | GND/CASE                          |  |
| 4                       | Output | Output                            |  |
| 5                       | N/C    | No Connect                        |  |
| 6                       | VDD    | VDD (+3.3Vdc)                     |  |

Figure 2 – QT86 Drawing and Pin Outputs

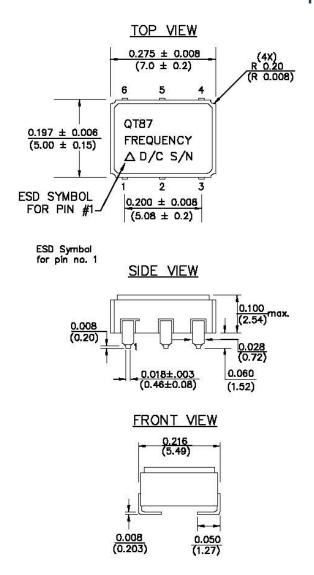



**Q-Tech Corporation** 

## QT86VP VCXO SERIES 5x7mm LVPECL Voltage Controlled Crystal Oscillator 3.3Vdc | 120MHz to 125MHz







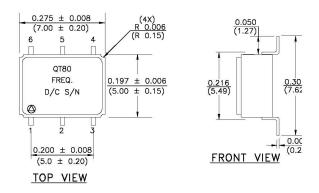

| QT85 (6 pads) |                 |                                   |  |
|---------------|-----------------|-----------------------------------|--|
| Pin No.       | Symbol Function |                                   |  |
| 1             | Vc              | VCXO Control Voltage              |  |
| 2             | E/D             | N/C or Enable/Disable (Option –D) |  |
| 3             | GND             | GND/CASE                          |  |
| 4             | Output          | Output                            |  |
| 5             | N/C             | No Connect                        |  |
| 6             | VDD             | VDD (+3.3Vdc)                     |  |

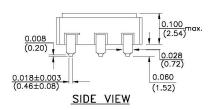
Figure 3 – QT85 Drawing and Pin Outputs

QPDS-0011RA (June 2020) Page 6 of 11






| QT87 (6 Leads) |                         |                                   |  |
|----------------|-------------------------|-----------------------------------|--|
| Pin No.        | Pin No. Symbol Function |                                   |  |
| 1              | Vc                      | VCXO Control Voltage              |  |
| 2              | E/D                     | N/C or Enable/Disable (Option –D) |  |
| 3              | GND                     | GND/CASE                          |  |
| 4              | Output                  | Output                            |  |
| 5              | N/C                     | No Connect                        |  |
| 6              | VDD                     | VDD (+3.3Vdc)                     |  |


Figure 4 – QT87 Drawing and Pin Outputs

| 10150 West Jefferson Boulevard, Culver City, CA 90232 | T: 310.836.7900 | F: 310.836.2157 | www.Q-Tech.com

Q-Tech Corporation







| QT80 (6 Leads) |                    |                                   |  |
|----------------|--------------------|-----------------------------------|--|
| Pin No.        | o. Symbol Function |                                   |  |
| 1              | Vc                 | VCXO Control Voltage              |  |
| 2              | E/D                | N/C or Enable/Disable (Option –D) |  |
| 3              | GND                | GND/CASE                          |  |
| 4              | Output             | Output                            |  |
| 5              | N/C                | No Connect                        |  |
| 6              | VDD                | VDD (+3.3Vdc)                     |  |

Figure 5 - QT80 Drawing and Pin Outputs



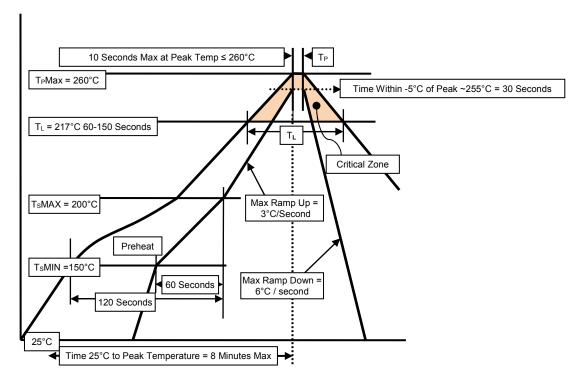



Figure 6 – Solder Reflow Profile

Reflow Profile per IPC/JEDEC J-STD-020D.1, 240°C Reflow Profile Also Acceptable

| 10150 West Jefferson Boulevard, Culver City, CA 90232 | T: 310.836.7900 | F: 310.836.2157 | www.Q-Tech.com

Q-Tech Corporation



#### **ENVIRONMENTAL AND MECHANICAL TEST SPECIFICATIONS**

| TEST                         | SPECIFICATION                                                                                                                                                                                         |  |
|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Temperature Cycling          | MIL-STD-883, Method 1010, Condition B                                                                                                                                                                 |  |
| Thermal Shock                | MIL-STD-883, Method 1011, Condition A                                                                                                                                                                 |  |
| Moisture Resistance          | MIL-STD-883, Method 1004                                                                                                                                                                              |  |
| Terminal Strength            | MIL-STD-883, Method 2004, Test Condition D                                                                                                                                                            |  |
| Solderability                | MIL-STD-883, Method 2003                                                                                                                                                                              |  |
| Resistance to Soldering Heat | MIL-STD-202, Method 210, Condition B                                                                                                                                                                  |  |
| Mechanical Shock             | MIL-STD-883, Method 2002, Condition B                                                                                                                                                                 |  |
| Mechanical Vibration         | MIL-STD-883, Method 2007, Condition A                                                                                                                                                                 |  |
| Gross Leak                   | MIL-STD-883, Method 1014, Condition C                                                                                                                                                                 |  |
| Fine Leak                    | MIL-STD-883, Method 1014, Condition A1                                                                                                                                                                |  |
| Solvent Resistance           | MIL-STD-202, Method 215                                                                                                                                                                               |  |
| Moisture Sensitivity Level   | MSL = 1                                                                                                                                                                                               |  |
| Contact Pads                 | Gold ( Au 60μin) Over Nickel (Ni 100-250μin) or Solder Dip Sn60Pb40/SAC305 Lead Free                                                                                                                  |  |
| ESD                          | Proper ESD Precautions Should be Taken When Handling and Mounting Crystal Oscillators.  Built in ESD Protection Circuitry Ratings are as Follows:  HBM Class 1C 1,999V per MIL-STD-883, Method 3015.7 |  |





Figure 7 – Units to be Tested

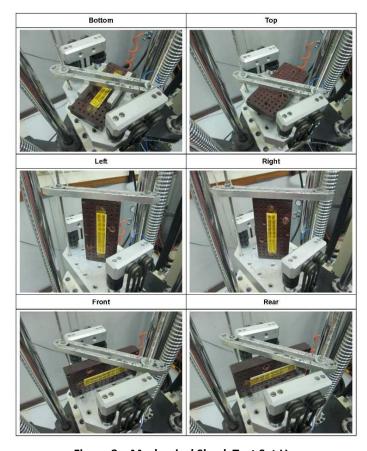



Figure 8 – Mechanical Shock Test Set Up

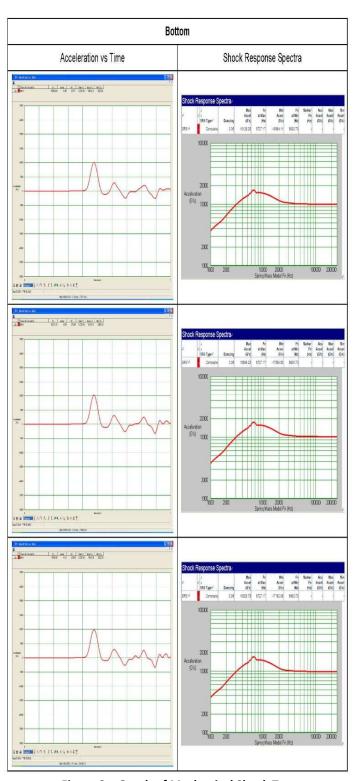



Figure 9 – Graph of Mechanical Shock Test