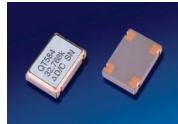
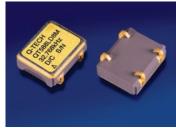
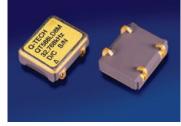

ULTRA-LOW CURRENT, HIGH-TEMPERATURE REAL TIME CLOCK DRIVER OSCILLATORS 2.5Vdc and 3.3Vdc - 32.768kHz


Description

Q-Tech's high temperature real time clock oscillators consist of a source clock square wave generator and a miniature round or strip quartz crystal built in a low profile hermetically ceramic package with gold plated contact terminals. The device provides a precision clock for timekeeping for most down-hole electronic applications by using AT or IT cut quartz crystals. The design and construction of the QT58X and QT59X series will make accuracy-improvement techniques over the traditional RTC with a 32.768kHz quartz tuning-fork crystal, which due to its parabolic characteristics that do not provide much accuracy over a wide temperature range. As a result, there is a gaining or losing up to seconds per day and tens of minutes per year. The device is built using high temperature materials and processes suitable for long life and highest reliability.


Features

- · Made in the USA
- ECCN: EAR99
- +3.3Vdc and +2.5Vdc operation
- 32.768kHz square wave CMOS output
- Wide operating temperature -55°C to +200°C
- Tight frequency stability (±40ppm to ±250ppm)
- Ultra-low current suitable for battery operation
- Excellent AT and IT cut crystal temperature characteristics
- · Tristate output standard
- · Fundamental design
- Fast start-up time
- · Hermetically sealed package
- 100% testing over temperature
- RoHS compliant



Applications

- · Real-time clock driver
- · 32.768kHz output crystal modules

ULTRA-LOW CURRENT, HIGH-TEMPERATURE REAL TIME CLOCK DRIVER OSCILLATORS 2.5Vdc and 3.3Vdc - 32.768kHz

Electrical Characteristics

0.9 x Vdd min.; 0.1 x Vdd max. ± 2mA min. VIH ≥ 0.7Vdd: Active VIL ≤ 0.3Vdd: High Impedance Stand-by current: 10µA max	Output voltage (Voh/Vol) Output Current (Ioh/Iol) Enable/Disable function Pin 1
$0.9 \times \text{Vdd min.}$; $0.1 \times \text{Vdd max.}$ $\pm 2\text{mA min.}$	Output voltage (Voh/Vol) Output Current (Ioh/Iol)
0.9 x Vdd min.; 0.1 x Vdd max.	Output voltage (Voh/Vol)
	Smr. ab mire (rend)
10ms max.	Start in time (Tetin)
15pF	Output Load
0.2μs typ., 1μs max.	Rise and Fall times (Tr, Tf between 10% and 90% of output waveform)
50/50% typ., 45/55% max.	Symmetry (50% of ouput waveform)
0.42 mA typ., 0.7mA max. 0.24 mA typ., 0.5mA max.	Operating supply current (Idd) (No Load)
-55°C to + 125°C	Storage temperature (Tsto)
See Ordering Information	Operating temperature (Topr)
See Ordering Information	Frequency stability ($\Delta F/\Delta T$)
+5Vdc	Maximum Applied Voltage (Vdd max.)
$+3.3 \text{Vdc} \pm 10\%$ $+2.5 \text{Vdc} \pm 10\%$	Supply voltage (Vdd)
32.768kHz	Output frequency range (Fo)
+3.3Vdc +2.5Vdc	Parameters

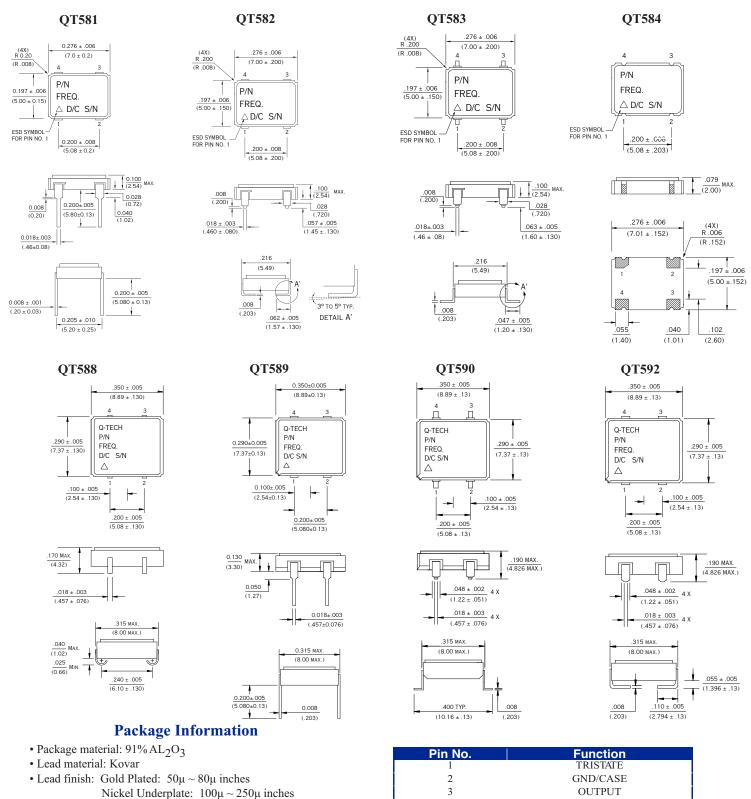
Q-TECH Corporation

10150 W. Jefferson Boulevard, Culver City 90232

Tel: 310-836-7900 - Fax: 310-836-2157

www.q-tech.com

QPDS-0117 (Rev C, March 2016)

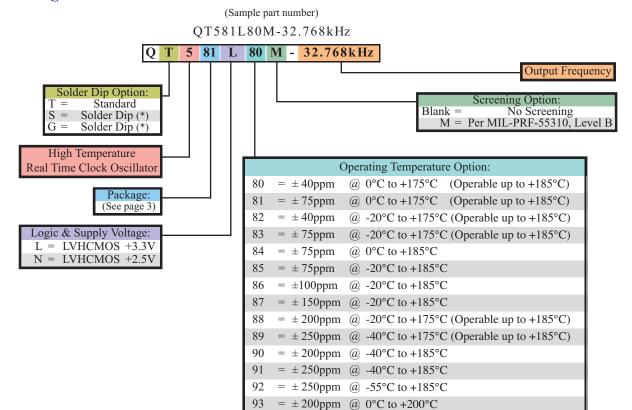

• Weight: 0.6g typ., 3.0g max.

32.768 kHz QT58X AND QT59X SERIES

VDD

ULTRA-LOW CURRENT, HIGH-TEMPERATURE REAL TIME CLOCK DRIVER OSCILLATORS 2.5Vdc and 3.3Vdc - 32.768kHz

Package Outline and Pin Connections - Dimensions are in inches (mm)



QPDS-0117 (Rev C, March 2016) 3 of 7

ULTRA-LOW CURRENT, HIGH-TEMPERATURE REAL TIME CLOCK DRIVER OSCILLATORS
2.5Vdc and 3.3Vdc - 32.768kHz

Ordering Information

For Non-Standard requirements, contact Q-Tech Corporation at Sales@Q-Tech.com

= ± 250 ppm @ 0°C to +200°C = ± 250 ppm @ -20°C to +200°C = ± 250 ppm @ -40°C to +200°C

= ± 250 ppm @ -55°C to +200°C = ± 250 ppm @ 0°C to +185°C

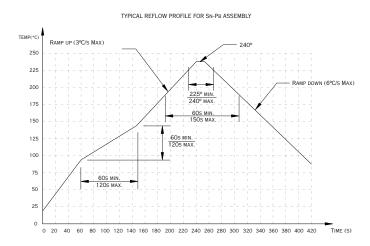
96

Packaging Options

- · Standard packaging in black foam
- Standard packaging in anti-static plastic tube (60 pcs/tube)
- Tape and Reel (800 pcs/reel) is available for an additional charge.

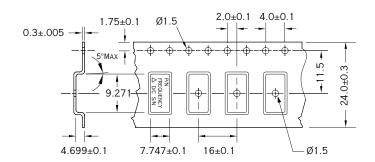
Other Options Available For An Additional Charge

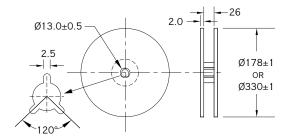
- P. I. N. D. test (MIL-STD 883, Method 2020, Condition B)
- (*) Hot Solder Dip options for an additional cost:
 - S = Sn60/Pb40 per MIL-PRF 55310
 - G = Lead free Alloy SAC305 (96.5% Sn, 3% Ag, 0.5% Cu)


QPDS-0117 (Rev C, March 2016) 4 of 7

ULTRA-LOW CURRENT, HIGH-TEMPERATURE REAL TIME CLOCK DRIVER OSCILLATORS
2.5Vdc and 3.3Vdc - 32.768kHz

Reflow Profile


The five transition periods for the typical reflow process are:


- Preheat
- Flux activation
- · Thermal equalization
- · Reflow
- · Cool down

Embossed Tape and Reel Information For QT588

FEEDING (PULL) DIRECTION —

Dimensions are in mm. Tape is compliant to EIA-481-A.

Reel size vs. quantity:

Reel size (Diameter in mm)	Qty per reel (pcs)
178	150
330	800

5 of 7

Environmental Specifications

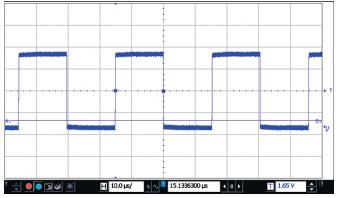
QPDS-0117 (Rev C, March 2016)

Q-Tech Standard Screening/QCI (MIL-PRF55310) is available for all of our QT581 and QT588 series. Q-Tech can also customize screening and test procedures to meet your specific requirements. The QT581 and QT588 series are designed and processed to exceed the following test conditions:

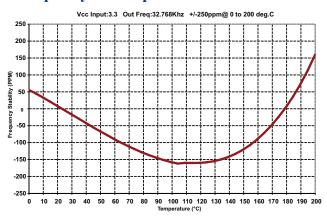
Environmental Test	Test Conditions	
Temperature cycling	MIL-STD-883, Method 1010, Cond. B	
Constant acceleration	MIL-STD-883, Method 2001, Cond. A, Y1	
Seal: Fine and Gross Leak	MIL-STD-883, Method 1014, Cond. A and C	
Burn-in	160 hours, 125°C with load	
Aging	30 days, 70° C, ± 1.5 ppm max	
Vibration sinusoidal	MIL-STD-202, Method 204, Cond. D	
Shock, non operating	MIL-STD-202, Method 213, Cond. I (See Note 1)	
Thermal shock, non operating	MIL-STD-202, Method 107, Cond. B	
Ambient pressure, non operating	MIL-STD-202, 105, Cond. C, 5 minutes dwell time minimum	
Resistance to solder heat	MIL-STD-202, Method 210, Cond. B	
Moisture resistance	MIL-STD-202, Method 106	
Terminal strength	MIL-STD-202, Method 211, Cond. C	
Resistance to solvents	MIL-STD-202, Method 215	
Solderability	MIL-STD-202, Method 208	
ESD Classification	MIL-STD-883, Method 3015, Class 1 HBM 0 to 1,999V	
Moisture Sensitivity Level	J-STD-020, MSL=1	

Note 1: Additional shock results successfully passed on 16MHz, 20MHz, 24MHz, 40MHz, and 80MHz

• Shock 850g peak, half-sine, 1 ms duration (MIL-STD-202, Method 213, Cond. D modified)


• Shock 1,500g peak, half-sine, 0.5ms duration (MIL-STD-883, Method 2002, Cond. B)

• Shock 36,000g peak, half-sine, 0.12 ms duration


Please contact Q-Tech for higher shock requirements Q-TECH Corporation - 10150 W. Jefferson Boulevard, Culver City 90232 - Tel: 310-836-7900 - Fax: 310-836-2157 - www.q-tech.com

ULTRA-LOW CURRENT, HIGH-TEMPERATURE REAL TIME CLOCK DRIVER OSCILLATORS
2.5Vdc and 3.3Vdc - 32.768kHz

Output Waveform (Typical)

Frequency vs. Temperature Curve

Thermal Characteristics

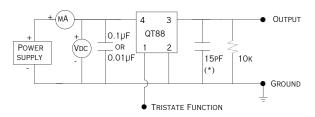
The heat transfer model in a hybrid package is described in figure 1.

Heat spreading occurs when heat flows into a material layer of increased cross-sectional area. It is adequate to assume that spreading occurs at a 45° angle.

The total thermal resistance is calculated by summing the thermal resistances of each material in the thermal path between the device and hybrid case.

$$RT = R1 + R2 + R3 + R4 + R5$$

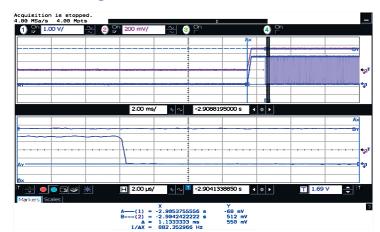
The total thermal resistance RT (see figure 2) between the heat source (die) to the hybrid case is the Theta Junction to Case (Theta JC) in C/W.

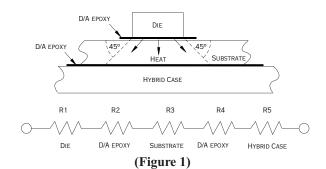

- Theta junction to case (Theta JC) for this product is 30°C/W.
- Theta case to ambient (Theta CA) for this part is 100°C/W.
- Theta Junction to ambient (Theta JA) is 130°C/W.

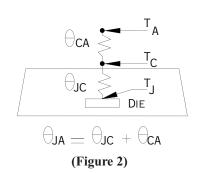
Maximum power dissipation PD for this package at 25°C is:

- PD(max) = (TJ (max) TA)/Theta JA
- With TJ = 175°C (Maximum junction temperature of die)
- PD(max) = (175 25)/130 = 1.15W

Test Circuit


TYPICAL TEST CIRCUIT FOR CMOS LOGIC




(*) CL INCLUDES PROBE AND JIG CAPACITANCE

The Tristate function on pin 1 has a built-in pull-up resistor typical $50k\Omega$, so it can be left floating or tied to Vdd without deteriorating the electrical performance.

Start up Time at 200°C

Q-TECH Corporation - 10150 W. Jefferson Boulevard, Culver City 90232 - Tel: 310-836-7900 - Fax: 310-836-2157 - www.q-tech.com

QPDS-0117 (Rev C, March 2016)

ULTRA-LOW CURRENT, HIGH-TEMPERATURE REAL TIME CLOCK DRIVER OSCILLATORS 2.5Vdc and 3.3Vdc - 32.768kHz

Revision History

ECO	REV	REVISION SUMMARY	Page
		Added dimension tolerance to QT582 & QT583 outlines	3
		Added Solder Dip option G	3
10336	В	Modified ordering information table	4
		Added "Revision History" table	7
		Add document number on footer of all pages	All
	C	Changed document number from QPDS-0007 to QPDS-0117 to avoid conflict	All
		Added temperature code 98	4